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Abstract: Superstrings propagating on backgrounds of the form AdS 3×G/H are studied using the
coset CFT approach. We focus on seven dimensional cosets which have a semiclassical limit, and

which give rise to N = 3 superconformal symmetry in the dual CFT. This is realized for the two

cases AdS 3× SU(3)/U(1) and AdS3× SO(5)/ SO(3), for which we present an explicit construction.
The spectrum of the two coset models is analyzed and compared. We also briefly comment on the

geometrical interpretation of our results.

1. Introduction

String propagation on curved backgrounds with

an AdS3 factor has been of recent interest. One

motivation is the fact that AdS 3 ' SL(2) is an
exact background which can be treated in string

pertubation theory, and thus allows to consider

the AdS/CFT correspondence [1] beyond the su-

pergravity limit. Some specific examples that

were studied in this context include superstrings

propagating on AdS3 ×N where N was a group
manifold [2, 3], or an orbifold of a group mani-

fold [4, 5]. In this contribution we study cases in

which N is a coset manifold [6]. This is an inter-
esting generalization of the AdS/CFT correspon-

dence which has been considered in the higher-

dimensional cases of type-IIB string theory on

AdS5×N 5 [7] and of M-theory on AdS 4×N 7 [8,
9], whereN 5 andN 7 are Einstein manifolds (gener-
ically coset manifolds) preserving a fraction of

supersymmetry. This type of construction al-

lows one to consider dual supersymmetric CFTs

which are not “orbifolds” of the maximally su-

persymmetric one. The AdS3×N case is some-
what different since here we have the possibility

of studying N in the context of coset CFTs.
We choose to study coset CFTs which have a

large radius (or large level k) semiclassical limit,

corresponding to superstrings propagating on seven-

dimensional coset manifolds. Moreover, we focus

∗Talk given by R. Argurio.

on cases in which the dual two-dimensional the-

ory (also referred to as the spacetime CFT) has

an extended superconformal symmetry. Coset

models leading to N = 2 can be easily realized

as particular cases of the general construction

of [10], where N decomposes as a U(1) factor
times a Kazama-Suzuki model [11]. On the other

hand, there are no seven-dimensional coset man-

ifolds leading to N = 4 supersymmetry in space-

time (except of course the cases [2, 3] in which

the cosets are actually group manifolds). There-

fore, we shall be interested in the cases where the

spacetime CFT has N = 3 supersymmetry.

2. Spacetime N = 3 superconformal

algebra

Extended superconformal algebras in two dimen-

sions also include an affine R-symmetry algebra,

which generally leads to a quantization of the

central charge in unitary theories. Specifically,

the N = 3 superconformal algebra has an affine

SU(2) subalgebra. The central charge is related

to the level k̃ of this affine SU(2), which is an

integer, by c̃ = 3
2 k̃ [12]. Therefore, a necessary

condition for string theory on a background of

the form AdS 3×N to have spacetime N = 3

superconformal symmetry is the existence of an

affine SU(2) in spacetime. This is obtained when

the worldsheet CFT on N has an affine SU(2)
symmetry as well [2]. If the respective world-
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sheet levels of SL(2) and of SU(2) are k and k′,
the analysis of [2, 13] shows that in the spacetime

theory we have c̃ = 6kp and k̃ = k′p, where p is
the integer number introduced in [2], related to

the maximal number of “long strings” [13, 14].

A further condition is thus k′ = 4k (recall that k
is not forced to be an integer).

Focusing on coset manifolds N which have 7
dimensions, so that a large k semi-classical limit

is possible, one sees that the only two cases which

satisfy the conditions given above are:

AdS 3×SU(3)
U(1)

, AdS3×SO(5)
SO(3)

, (2.1)

It is straightforward to show that the two mod-

els above are critical when the level of the SU(3)

and of the SO(5) respectively is 4k. We now show

that these two models indeed possess N = 3 su-

perconformal symmetry in spacetime by explicit

construction. Since the construction is similar in

the two cases, we will focus here on the first case,

the second one goes along very similar lines.

We first have to set some notations, starting

from the SL(2) WZW part. We mainly follow

the formalism of [11] and [2]. For simplicity we

only treat the holomorphic sector.

The SL(2) supersymmetric WZW model is

constituted of the three currents JP (z), P =

1, 2, 3 of the SL(2) affine algebra at level k, and

the three fermions ψP implied by the N = 1

worldsheet supersymmetry. As usual in super-

symmetric WZWmodels, the currents can be de-

composed in two pieces:

JP = ĴP − i

k
ηPQεQRS ψ

R ψS , (2.2)

where ηPQ = (+ + −) and ε123 = 1. The first
piece ĴP constitutes an affine algebra at level

k + 2, and has regular OPE with the fermions

ψP . We thus refer to ĴP as the bosonic currents.

The second part constitutes an affine algebra at

level −2, and is the fermionic part of the current.
Let us now turn to the SU(3)/U(1) coset

CFT. We start from the SU(3) affine superal-

gebra at level k′ = 4k realized as follows:

KA(z)KB(w) ∼ (k
′/2)δAB

(z − w)2 +
ifABCK

C(w)

z − w ,

KA(z)χB(w) ∼ ifABCχ
C(w)

z − w ,

χA(z)χB(w) ∼ (k
′/2)δAB

z − w . (2.3)

Here A,B,C,D = 1, . . . , 8 and the structure con-

stants fABC are f123 = 1, f147 = −f156 = f246 =
f257 = f345 = −f367 = 1/2 and f458 = f678 =√
3/2. As before, we split the currents into their

bosonic and fermionic parts:

KA = K̂A − i

k′
fABC χ

BχC . (2.4)

The bosonic currents realize an affine algebra at

level k′ − 3.
We now choose to mod out the SU(3) by the

U(1) generated by K8. The SU(2) subgroup gen-

erated by K1,K2,K3 is orthogonal to this U(1),

and thus survives as an affine algebra in the coset

CFT. The stress-energy tensor and the supercur-

rent of the coset CFT are built as in [11], using

the decomposition TSU(3) = TSU(3)/U(1) + TU(1),

and similarly for the supercurrent G.

Our goal now is to build the spacetime super-

charges. For that we would like to construct spin-

fields via bosonization following [15]. Note that

since we are dealing with a coset and not with a

group manifold, the fermions are generically not

free. Of course since the SU(2) is preserved as

an affine symmetry, the fermions belonging to it

are free. Despite the above remark, we bosonize

the 10 fermions into 5 scalars. Define:

∂H1 =
2

k
ψ1ψ2 , ∂H2 =

2

k′
χ1χ2 ,

i∂H3 =
1

k
ψ3χ3 , ∂H4 =

2

k′
χ4χ5 ,

∂H5 =
2

k′
χ6χ7 . (2.5)

The scalars HI are all canonically normalized:

HI(z)HJ (w) ∼ −δIJ log(z − w). Obviously, the
scalars H4 and H5 are not free in the coset CFT.

However, it is also easy to see that there is a

linear combination of them which is free. This is

what will enable us to build the N = 3 spacetime

superalgebra.

We thus write:

H± =
1√
2

(
H4 ±H5

)
. (2.6)

The expression for the stress-energy tensor T is

therefore:

T =
1

k

(
Ĵ1Ĵ1 + Ĵ2Ĵ2 − Ĵ3Ĵ3)

2
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+
1

k′
(
K̂1K̂1 + · · ·+ K̂7K̂7)−

− 1
2

(
∂H1∂H1 + ∂H2∂H2 (2.7)

+∂H3∂H3 + ∂H−∂H−
)−

− 1
2

(
1− 3

k′

)
∂H+∂H+ +

i
√
6

k′
K̂8∂H+ .

We conclude that H− is the fourth free scalar,
namely that ∂H− is a primary field of weight 1.
We now write the worldsheet N = 1 super-

current, which will be used to enforce the BRST

condition on the spin fields. The supercurrent

for the coset CFT reads:

Gcoset =
2

k′

(
χāK̂ ā − i

3k′
fāb̄c̄ χ

āχb̄χc̄
)
, (2.8)

where ā are indices in the coset G/H . We get

the following expression for Gtot = Gsl +Gcoset
in our model:

Gtot =
2

k

(
ψ1Ĵ1 + · · · − ψ3Ĵ3)

+
2

k′
(
χ1K̂1 + · · ·+ χ7K̂7)+

+
i√
k

{
∂H1
(
eiH3 − e−iH3) (2.9)

−1
2

(
∂H2 +

1√
2
∂H−

)(
eiH3 + e−iH3

)}
+

+
1

2
√
k

(
eiH2−i

√
2H− − e−iH2+i

√
2H−
)
.

Before going on to the BRST condition for the

spin-fields, we write for completeness the expres-

sions for the SU(2) currents. Writing K± =
K1 ± iK2 and similarly for the bosonic currents
and the fermions, we get:

K± = K̂± ∓ e∓iH2(eiH3 + e−iH3)± e∓i√2H−
K3 = K̂3 − i

(
∂H2 +

1√
2
∂H−

)
. (2.10)

Note that since these currents are primaries of

weight 1, this could have been an alternative way

of showing that H− is a free scalar.
In order to construct the spacetime super-

conformal algebra we need, in particular, to con-

struct physical supercharges which we choose to

write in the −1/2 picture [15]:

Q ∝
∮
e−ϕ/2uαSα(z) dz . (2.11)

Here Sα is a basis of spin-fields, u
α are con-

stants, and ϕ is the bosonized superconformal

ghost. The set of operators e−ϕ/2uαSα(z) should
be BRST invariant and mutually local. We choose

a basis of spin-fields

S[ε1ε2ε3ε−] = e
i/2
(
ε1H1+ε2H2+ε3H3+ε−

√
2H−
)
,

(2.12)

where εI = ±1. BecauseH− is a free scalar, these
16 spin-fields are primaries of weight 5/8 and,

therefore, e−ϕ/2uαSα(z) are primaries of weight
1, as they should be.

The super BRST condition on e−ϕ/2uαSα
further requires that there will be no (z − w)−3/2
singular terms in the OPE of uαSα with the su-

percurrent Gtot (note that the only dangerous

terms inGtot are the ones trilinear in the fermions,

i.e. the last three lines in (2.9)). This leaves 8

combinations uαSα out of the 16 spin-fields (2.12).

The GSO condition, i.e. mutual locality, further

leads to one of two choices of chirality: ε1ε2ε3 =

−1 or ε1ε2ε3 = 1, under which 6 or 2 of the com-
binations uαSα survive, respectively.

For spacetime chirality ε1ε2ε3 = −1, the 6
physical spin-fields carry quantum numbers of

the global SL(2) and SU(2) symmetries, in the

(2,3) representation, as can be checked by tak-

ing the OPEs with the respective currents. It can

be shown [6] that this model reproduces the full

N = 3 superconformal algebra, in the NS sector.

For the other spacetime chirality ε1ε2ε3 = 1,

the 2 physical spin-fields have regular OPEs with

the SU(2) currents. This leads to only N = 1 in

spacetime.

3. General conditions for obtaining

N = 3

We now present general conditions for the ap-

pearance of the N = 3 superconformal algebra in

the context of string theory on AdS3×N . Such
a background leads to N = 3 superconformal al-

gebra in spacetime provided that:

(i) N has an affine SU(2) current algebra at
level k′ = 4k, where k is the level of SL(2).

(ii) N/U(1) has N = 2 worldsheet supersym-
metry, where U(1) is the Cartan subalgebra

of the above SU(2). This condition alone

3
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allows one to construct an N = 2 supercon-

formal algebra in spacetime (for a definite

GSO projection).

(iii) This spacetime N = 2 algebra is enhanced

to N = 3 if the scalar H0 constructed as

in [10] can be decomposed as
√
3H0 = H2+√

2H̃0, whereH2 derives from the bosoniza-

tion of the two remaining charged fermions

of the SU(2), and H̃0 is orthogonal to it.

Interestingly, these conditions imply as a by-product

that for the opposite GSO projection we also get

supersymmetry in spacetime, namely N = 1.

Let us present the proof by constructing the

N = 3 superalgebra generators given the above

conditions. Recall that besides the scalar i
√
3∂H0 =

J
N/U(1)
R − 4

k′K
3 defined in [10], we define also the

scalars ∂H1 = (2/k)ψ
1ψ2 and i∂H3 = (1/k)ψ

3χ3.

The existence of the affine SU(2) allows us to de-

fine also ∂H2 = (2/k
′)χ1χ2. Consider now the

currents K3 and K±. Since they form an SU(2)
supersymmetric WZW model (embedded inside

the CFT onN ), they can be split into orthogonal
pieces:

K3 = K̃3−i ∂H2, K± = K̃±∓ 2√
k′
e∓iH2χ3 .

(3.1)

We start now by noting that condition (iii) im-

plies the following:

i
√
2 ∂H̃0(z)K

3(w) ∼ − 1

(z − w)2 . (3.2)

This means that K3 can be split further:

K3 = K̂3 − i√
2
∂H̃0 − i∂H2 , (3.3)

where K̂3 has a regular OPE with H̃0 (and of

course H2). Similarly, the currents K
± also split

into a “bosonic” part K̂± which realizes an affine
SU(2)k′−3, an SU(2)1 part built from H̃0 and the

usual fermionic SU(2)2 piece:

K± = K̂± ∓ e∓i
√
2H̃0 ∓ e∓iH2(eiH3 + e−iH3) .

(3.4)

We now decompose the supercurrent of the

CFT on N into an SU(2) part and a N/ SU(2)
one. It can then be used to directly find all of

the 8 physical spin-fields, 6 of one chirality and 2

of the other. The SU(2) part of the supercurrent

is:

GSU(2) =
2

k′

(
1

2
χ+K̃−+

1

2
χ−K̃++χ3K̃3−2i

k′
χ1χ2χ3

)
.

(3.5)

Using (3.1), (3.3) and (3.4), and the bosoniza-

tion, the relevant part of GSU(2) for the BRST

condition (i.e. the one that might lead to (z −
w)−3/2 singular terms in the OPE with the spin-
fields) is:

G =
1√
k′

{
− i
(
∂H2 +

1√
2
∂H̃0

)(
eiH3 + e−iH3

)−
−
(
eiH2−i

√
2H̃0 − e−iH2+i

√
2H̃0
)}
+ · · · . (3.6)

The first piece will give rise to a (z − w)−3/2

singularity only when ε2 = ε̃0, while the second

piece will do so only when ε2 = −ε̃0. Choosing
ε2 = ε̃0, we get 4 physical spin-fields of the same

chirality. For ε2 = −ε̃0 we get 4 physical spin-
fields, two of each chirality. It thus accordingly

leads to the N = 3 or N = 1 superalgebra.

4. The chiral spectrum

We now compute the chiral spectrum of the space-

time theories in the two coset model backgrounds

AdS3 × SU(3)/U(1) and AdS3 × SO(5)/SO(3),
and show that it agrees, thus suggesting that the

two models belong to the same moduli space.

Note that in the case of the N = 3 supercon-

formal algebra the R-charge is quantized to be

in 12Z because the U(1) is actually the J
3 of the

SU(2) R-symmetry. Therefore the real issue is

that of the multiplicity of chiral states in each

energy level.

The chirality condition of the N = 3 super-

conformal algebra is the saturation of the bound

2L0 ≥ T 30 , i.e. that the spacetime weight equals

half the spacetime R-charge which in our case

arises from the unbroken SU(2) spin:

hST =
1

2
jST (4.1)

which can, of course, occur only for the highest

weight state inside each SU(2) multiplet.

We start by considering the general form of

an NS vertex operator. The construction of such

4
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vertex operators in curved backgrounds of the

form AdS3 × G/H goes along similar lines to

that of the flat case. Here however we have to

replace the plane wave zero modes with the ver-

tex operators Vj,m and Ur,j′,Q correponding to

the zero modes on AdS3 and G/H . The vertex

operators on AdS3 are labeled by j,m according

to the representation of SL(2) [2], and those on

G/H by the representation of G that we denote

here by r, by the representation of the unbroken

SU(2) denoted by j′ and possibly by other quan-
tum numbers of G/H that are denoted here by

Q.

It turns out that the following vertex opera-

tors are the only candidates:

e−φ
(
ψ3 − 1

2
γψ− − 1

2γ
ψ+
)
Vj,mUr,j′,Q (4.2)

which have spacetime scaling dimension hST = j.

Using k′ = 4k the physicality condition reads:

j(j + 1) =
1

4

(
CG − CH) , (4.3)

where CG and CH are the Casimirs of the repre-

sentations of G and H respectively (see [16] for

all the details).

We now turn to calculate the quadratic Casimir

eigenvalues in a general representation of SU(3)

in order to use (4.3) for the calculation of the chi-

ral spectrum in the AdS3 × SU(3)/U(1) case. A
representation of SU(3) is denoted by two posi-

tive integers [r, s] and has a highest weight

µ = rµ1 + sµ2 =

(
r + s

2
,
r − s
2
√
3

)
. (4.4)

Its Casimir is:

C[r,s] =
(r + s)

2

(r + s+ 4)

2
+
(r − s)2
12

. (4.5)

Now since SU(2) × U(1) ⊂ SU(3), the Cartan

subalgebra of SU(3) is composed of this U(1)

(denoted by K8 by which we mod out) and the

Cartan generator K3 of the SU(2). It is easy to

see that the U(1) charge under this K8 is the y

coordinate in weight space (x, y), while the x co-

ordinate is the K3 eigenvalue. Again, since we

are looking for chiral primaries we must take the

highest SU(2) weights in a given SU(2) repre-

sentation.

Since the quadratic Casimir of the U(1) in

a given representation is simply the square of

the U(1) charge in that representation, we can

straightforwardly compute (4.3) on the highest

weight of the SU(3) representation, and it is eas-

ily solved to give:

j =
(r + s)

4
(4.6)

As explained above the x coordinate in weight

space (x, y) is the charge j′ in the unbroken SU(2)
which serves as the R-symmetry in the space-

time superconformal algebra and therefore we

can write

jST = j
′ =
(r + s)

2
. (4.7)

Comparing now between (4.7) and (4.6) we con-

clude that

hST = j =
(r + s)

4
=
1

2
jST , (4.8)

i.e. these states are chiral.

Let us thus recapitulate that every SU(3)

representation gives rise to a chiral state in space-

time, through the vertex operator built using the

highest weight of the representation. We can

thus read off the multiplicity of chiral states at

each spacetime spin jST = j
′ = (r+s)

2 to be 2j′+1
since we have such a state coming from each [r, s]

SU(3) representation with (r+s)2 = j′. Moreover,
it can be proven that the identification of chiral

primaries done so far is complete, i.e. that there

are no new chiral primaries arising neither from

the NS sector nor from the Ramond sector.

In a similar fashion, one can show that the

spacetime chiral spectrum in the SO(5)/SO(3)

is identical to the one described above. How-

ever one can easily get convinced that the non

chiral spectrum is not identical. For example,

in the SO(5)/SO(3) the smallest neutral state

has spacetime weight hST (hST + 1) =
1
8 . Such

states do not exist in the SU(3)/U(1) spacetime

CFT, since there the smallest neutral state has

hST (hST + 1) =
1
4 . We therefore conclude that

the agreement of the chiral spectrum is a non

trivial fact suggesting that the two models are

part of the same moduli space.

5
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5. Conclusion

We conclude by commenting on the geometri-

cal interpretation. It would be nice to trans-

late the conditions we impose on the CFT on

N into conditions on the geometry of the mani-
fold. A related, but different, problem was actu-

ally discussed in the literature [8, 9], where con-

ditions on Einstein 7-manifolds N are found in
order to get different amounts of supersymmetry

when considering 11 dimensional supergravity on

AdS4 × N . The condition for getting N = 3 in
AdS4 is that N has a tri-sasakian structure. The
above geometries are considered as near hori-

zon geometries of M2-branes at the singularity

of the Ricci-flat cone C(N ) over such manifolds.
The tri-sasakian structure implies the presence

of 3 Killing vectors forming an SO(3) algebra

which rotates the 3 Killing spinors. It turns out

that the only 7-dimensional tri-sasakian mani-

folds (satisfying some additional regularity con-

ditions) are exactly the cosets SU(3)/U(1) and

SO(5)/ SO(3) ∼= S7.
We should nevertheless stress that in spite of

the similarity, there are a few differences. For in-

stance, superstring theory on AdS 3×N does not
require N to be an Einstein manifold.1 Recall
that the metric of the coset CFT sigma model,

which can be obtained by gauging the WZW

model on the group G and integrating out the

gauge fields, is not the same as the metric on the

homogeneous G/H coset space. Thus presum-

ably the direct relation between the two issues is

more algebraic in nature than geometrical.

Another question regards the brane config-

uration which might lead to the models consid-

ered here in the near horizon limit. Since we are

dealing with pure NSNS backgrounds in type II

theories, we expect such a brane configuration

to involve fundamental strings and NS5-branes

intersecting on the string, and possibly at non-

trivial angles.
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