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Abstract: Representations of four-dimensional superconformal groups on harmonic superfields are

discussed. It is argued that any representation can be given as a superfield on any (non twistorial)

superflag manifold. Representations on analytic superspaces do not require constraints. We discuss

short representations and how to obtain them as explicit products of fundamental fields. We also

discuss superfields that transform under supergroups.

1. Introduction

The unitary irreducible representations of super-

conformal groups have assumed more significance

recently in the light of the Maldacena conjecture

[1] relating string theory or M-theory on AdS×S
to superconformal field theories on the bound-

ary. A particularly important class of operators

that can arise consists of those operators which

correspond to short representations of the super-

conformal group since these are expected to be

protected from quantum corrections and thus not

acquire anomalous dimensions [2]. Long repre-

sentations are also of interest and are supposed

to correspond to string states [3].

There are different methods of constructing

these representations [4, 5]. In this talk how-

ever we discuss a way of constructing representa-

tions explicitly as superfields using the method

of parabolic induction, focusing on four dimen-

sional superconformal groups, SU(2, 2|N).1 This
method was discussed in some detail in [7], al-

though a direct comparison with the more al-

gebraic group-theoretic results of [4, 5] was not

made at the time. We complexify spacetime, and

complexify the superconformal group to SL(4|N)
so that all the spaces of interest become coset

spaces of this group. We claim that any represen-

tation may be given as a holomorphic field on any

superflag space (except for supertwistor spaces).

1Superconformal fields in harmonic superspaces have

also been discussed recently in [6].

On some spaces (e.g. super Minkowski space and

chiral spaces) the fields will require extra con-

straints, whereas on others (in particular analytic

spaces) they will require no constraints, and this

makes tensoring representations together to pro-

duce other representations straightforward.

In section 2 we briefly recall parabolic in-

duction and illustrate this in the bosonic con-

text with the group SL(N). In section 3 we con-

sider the full superconformal group SL(4|N) and
look at short representations. Finally in section 4

we consider representations that transform under

supergroups, and give some specific examples.

This talk is based on [8] and work in progress.

2. The Bosonic case

2.1 Coset Spaces

If G is a Lie group and P a subgroup, a coset

spaceM is the space of (right) cosets: M = P\G,
and we obtain the fibre bundle: G→ P\G, with
fibres P.

We can define a representation of G on the

space of equivariant maps F : G → V , where V

is the representation space of P , i.e. maps such

that

F (hu) = R(h)F (u) (2.1)

where u ∈ G and R is the representation of P

on V (in practice these are fields with indices).

The induced representation itself is given by F 7→
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g · F, g ∈ G where
(g · F )(u) = F (ug). (2.2)

All the subgroups P we are interested in will

be parabolic subgroups (defined below), and the

maps F will be holomorphic maps. In this case

the spaces are known as flag spaces.

Let G be a complex, simple Lie group and

let g be its Lie algebra. For the case of sl(N) we
define the Borel subalgebra to be the algebra of

all lower triangular matrices (with non-zero en-

tries on the diagonal allowed), and a parabolic

subalgebra p is one which is block lower triangu-
lar: 



• •
• •
• • • •
• • • •
• • • • • • •
• • • • • • •
• • • • • • •

.

.




}
k1


 k2




k3

(2.3)

The corresponding Levi subalgebra is the block

diagonal subalgebra, i.e. s(gl(k1)⊕gl(k2−k1)⊕
. . .). A parabolic p can also be represented by
placing a cross on each of the nodes k1, k2, . . . , kl
of the Dynkin diagram for sl(N) (see [9]).
For example, complexified Minkowski space

can be viewed as an open subset of the coset

space P\SL(4), SL(4) being the complexified con-
formal group and P the parabolic subgroup of

matrices of the following shape:

• •
• •
• • • •
• • • •


 (2.4)

where the bullets denote elements which do not

have to be zero. The blank region can be thought

of as corresponding to spacetime. Indeed, we can

choose a coset representative of the form

M 3 x 7→ s(x) =

(
12 x

02 12

)
(2.5)

where each entry is a two-by-two matrix. From

this one can easily work out the transformation

of x under the conformal group. The Levi subal-

gebra is s(gl(2)⊕gl(2)) and the Dynkin diagram
is • × • .

2.2 Representations of SL(N)

Highest weight representations of SL(N) can be

specified by giving N − 1 integral Dynkin labels,
ai ≥ 0, i = 1 . . .N−1 which are placed above the
nodes of the Dynkin diagram for SL(N). High-

est weight representations of parabolic subgroups

are actually representations of the Levi subgroup

as the other bits act trivially. These can also be

specified by giving N − 1 Dynkin labels, placed
above the corresponding Dynkin diagram with

crosses through it (in this case the labels above

nodes with crosses through them can be negative,

and correspond to C charges, the remaining la-

bels give the representations of the sl(ki) of the
Levi algebra.) The Borel-Weil theorem tells us

that if we pick a representation of P with positive

Dynkin labels, then the induced representation of

G on holomorphic fields of P\G described above
is isomorphic to the representation of G with the

same Dynkin labels (see [9]). Diagrammatically

we have

• • • • • • •· · · · · · · · · · · ·
a1 a2 aj ak al aN−2 aN−1

∼= • • × • × • •· · · · · · · · · · · ·
a1 a2 aj ak al aN−2 aN−1

(2.6)

where crosses can be placed on any of the nodes

of the right hand side.

The simplest example of this formula gives

representations of SL(2) as fields on H\SL(2) =
CP 1 where H is the set of 2× 2 lower triangular
matrices with unit determinant. Diagrammati-

cally we have

p

•
∼= p

× (2.7)

The right hand side of this equation represents

the space of holomorphic tensor fields of charge p

on CP 1. This is a p+1-dimensional space which

is identified with the space of pth rank symmetric

tensors under SL(2) (the left-hand side of the

equation.)

3. Superspaces

We wish to extend the above formalism to the

2
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case of the superconformal group SL(4|N).2 Here
we can have different, inequivalent Borel sub-

groups (see [10]). However, if we make a change

of basis of C
4|N
on which the SL(4|N) matrix

acts, we can change an element in the Lie alge-

bra sl(4|N) as follows:

g =


 4

N


→



2

N

2


 . (3.1)

In this basis the particular choice of Borel sub-

algebra consistent with super Minkowski space

consists of the lower triangular matrices, and

parabolic subalgebras consist of block lower tri-

angular matrices, as in the bosonic case.

Super Dynkin diagrams can also be defined

for SL(4|N) as follows

• ◦ • • · · · • •︸ ︷︷ ︸
N−1

◦ •

(3.2)

In this diagram the N − 1 central black nodes
represent the sl(N) subalgebra. The two black
nodes on the ends represent the space-time sl(2)
representations. The two white nodes are odd

nodes representing odd roots in the Lie algebra.

This diagram is not a unique diagram for sl(4|N),
but is the one which corresponds to the choice

of Borel subalgebra above, and is thus the one

which is consistent with super Minkowski space.

Different Borel subalgebras will lead to different

Dynkin diagrams. Crosses can be put anywhere

on this diagram to represent parabolic spaces as

in the bosonic case.

For example, complexified super Minkowski

space has the form P\SL(4|N) where P consists
of matrices of the form



• •
• •
• • • . •
. . . . .

• • • . •
• • • . • • •
• • • . • • •




(3.3)

2We are eventually going to be interested in uni-

tary representations of the real superconformal group

SU(2, 2|N). However, homogeneous space techniques are
more easily applied in the complex setting. One can re-

turn to real spacetime by taking x real and ϕ = θ̄.

and has corresponding Dynkin diagram

• ⊗ • • · · · • • ⊗ •
(3.4)

The standard coset representative is

M 3 z 7→ s(z) =



12 θ x

0 1N ϕ

0 0 12


 (3.5)

where ϕ denotes the N dotted two-component

spinorial coordinates which become the complex

conjugates of the θ’s in the real case.

We shall be interested in other superspaces

which extend Minkowski space by an internal flag

space. Such superspaces are called harmonic su-

perspaces and were first introduced by GIKOS

[11]. Complexified (N, p, q) harmonic superspace

has the following Dynkin diagram

• ⊗ • × • × • ⊗ •· · · · · · · · · · · ·
(3.6)

where the middle crosses are on the pth and (N−
q)th central nodes. Locally, this space has the

form of complex super Minkowski space times an

internal flag space. The related (N, p, q) analytic

superspace has the same body but fewer odd co-

ordinates. It has the following Dynkin diagram

• ◦ • × • × • ◦ •· · · · · · · · · · · ·
(3.7)

This space has only (N − p) θ’s and (N − q)

ϕ’s. Generalised (N, p, q) spaces can be defined,

which have the same number of θ’s and ϕ’s as

(N, p, q) space, but have a different internal space.

These are given by the same Dynkin diagram as

above, but with any number of extra crosses in-

serted between the two already there.

3.1 Superconformal Representations

Representations of the superconformal group

SL(4|N) can be specified by the following quan-
tum numbers: Lorentz spin, j1, j2, dilation weight,

L, R-charge R, and the Dynkin labels of the

internal group, a1 . . . aN−1. The unitary irre-
ducible highest weight representations fall in three

series: A, B and C [4]. It is possible to define

super-Dynkin labels for the group SL(4|N) as

3



Nonperturbative Quantum Effects 2000 Paul Heslop and Paul Howe.

follows:

• ◦ • • · · · • • ◦ •
2j1 S a1 a2 aN−2 aN−1 T 2j2

(3.8)

where

S = 1
2 (L −R) + j1 + mN −m1

T = 1
2 (L +R) + j2 − mN

(3.9)

and where m1 =
∑N−1
k=1 ak, m =

∑N−1
k=1 kak.

Then the three series correspond to the follow-

ing conditions on the labels:

A) S ≥ 2j1 + 1 T ≥ 2j2 + 1

B) S ≥ 2j1 + 1 T = j2 = 0

or S = j1 = 0 T ≥ 2j2 + 1

C) S = j1 = 0 T = j2 = 0

(3.10)

We are now in a position to apply the formalism

of section 2 to the super case.

3.2 Short Representations

Short representations are characterised by being

short multiplets and thus having shorter range of

spins than unconstrained superfields on Minkowski

superspace. Such representations act naturally

on superfields defined on analytic superspaces

since these have fewer odd coordinates than Min-

kowski superspace.

The superfields on (N, p, q) space should trans-

form under irreducible representations of Levi

subalgebras of the form l = s(gl(2|p)⊕gl(2|q)⊕
gl(r)), r = N − (p + q). However, in order to
ensure that the representations are indeed short

these superfields must not carry any spacetime

indices. They must therefore transform trivially

under any supergroup factors of the Levi sub-

group. In the generic case this means that they

transform only under sl(r) ⊕C2.
In order to keep matters as simple as pos-

sible, we shall concentrate for the time being

on (N, p, q) superspaces. The representations to

be studied can then be represented by modified

Dynkin diagrams of the following type:

• ◦ • × • × • ◦ •· · · · · ·
0 0 0 ap ai aN−q 0 0 0

(3.11)

For the reasons discussed above the first (p− 1)
and the last (q − 1) Dynkin labels must vanish,
leaving (r−1) labels to specify the representation
of the central sl(r) and two further labels which
specify the charges.

3.3 Massless Multiplets

Some simple examples of superconformal repre-

sentations are given by on-shell massless multi-

plets, with maximal helicity s, where [N2 ] ≤ 2s <
N ([N2 ] denotes the nearest integer greater than

or equal to N2 .) These have the following super-

Dynkin labels:

• ◦ • • • • • ◦ •· · · · · ·
0 0 0 0 1 0 0 0 0

(3.12)

where ap = 1 and all other Dynkin labels are 0

(here p = 2s). These are described in (real) su-

per Minkowski space,M , by superfieldsW which

have p totally antisymmetric internal indices and

which satisfy [12, 13]

D̄iα̇Wj1...jp =
p(−1)p−1
N − p+ 1δ

i
[j1
D̄kα̇Wj2...jp]k

DαiWj1...jp = Dα[iWj1...jp] (3.13)

For each such superfield there is a conjugate su-

perfield W̃i1...iN−p , and these obey similar con-

straints. When s = 1
4N , the multiplet is self-

conjugate.

We can extend this to p = N , since for such

a superfield the constraints (3.13) imply that it

is anti-chiral. Its conjugate has no indices and

is chiral. Such a chiral field describes an on-

shell massless super multiplet (with maximum

spin N/2) if it satisfies the additional constraint

DαiD
α
jW = 0. (3.14)

The most natural spaces to put these repre-

sentations on is (N, p,N−p) analytic superspace,
giving the Dynkin diagram

• ◦ • • × • • ◦ •· · · · · ·
0 0 0 0 1 0 0 0 0

(3.15)

On these spaces they don’t satisfy any constraints

(an example of this will be given in the next sec-

tion.)

4
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There are many other ways of representing

such multiplets which are “less efficient” in that

the superspaces have more odd coordinates. Fol-

lowing the discussion at the end of the previous

section we can simply place crosses where we like

on the above Dynkin diagram with the restric-

tion, for the moment, that the cross furthest to

the left must be to the left of the node with the

1 above it, and the cross furthest to the right

must be to the right of this node, to avoid super

indices. As we are talking about analytic super-

spaces, we do not want any crosses on the end

nodes, (these would correspond to super twistor

spaces) . For example, any such field (excluding

p = 0, N) can be realised on (N, 1, 1) space:

• ◦ × • · · · • × ◦ •
(3.16)

To illustrate this procedure we consider the

N = 4 Maxwell super multiplet which is repre-

sented on N = 4 super Minkowski space by the

self-conjugate Sohnius superfield Wij [14]. We

can put this on (4, 2, 2) analytic space [15]

• ◦ • × • ◦ •
0 0 0 1 0 0 0

(3.17)

where it becomes a field with no indices, and a

charge. In the Yang-Mills theory, we can mul-

tiply these together and get fields which corre-

spond to the Kaluza-Klein states on AdS5 in the

AdS/CFT correspondence. We could also, how-

ever put it on (4, 1, 1) analytic superspace [16]

• ◦ × • × ◦ •
0 0 0 1 0 0 0

(3.18)

on which it has an SL(2) index: W1r, r ∈ {2, 3}.
We can obtain all series C representations with

R = 0 by simply multiplying copies of this field,

and taking irreducible representations of SL(2).

Finally we could put it on (4, 1, 0) analytic su-

perspace

• ◦ × • • ⊗ •
0 0 0 1 0 0 0

(3.19)

where it becomes a field with an SL(3) index:

W1r, r ∈ {2, 3, 4}. In this case, the field only

obeys all the constraints of the Sohnius field due

to self-conjugacy. We can obtain all series C and

B representations with R = 0 by multiplying

copies of this field together and taking irreducible

representations under SL(3). Doing this using

the Yang-Mills field and taking multiple traces

corresponds to BPS states in the AdS/CFT cor-

respondence [6].

The above superfields have been defined on

(4, 1, 1) and (4, 1, 0) superspaces which have the

smallest possible internal flags. It is possible to

relax this, and use “generalised” (N, p, q) spaces.

For example we could use the maximal flag space

determined by the Borel subalgebra. In the (4, 1, 1)

case for instance, this is the space

• ◦ × × × ◦ •
0 0 0 1 0 0 0

(3.20)

We would then split the indices as I = 1, 2, 3, 4;

this enables us to define the field W12. A dis-

advantage of this is that multiplying such fields

together to get different representations is now

no longer such a simple procedure.

4. Super Indices

In the previous section we considered various short

representations on harmonic superspaces, and we

insisted that they did not have any super indices

so we could explicitly see that the representations

were short. In this section we consider fields that

do have super indices. For simplicity we will re-

strict ourselves to N = 2 analytic superspace.

This has the Dynkin diagram

• ◦ × ◦ • (4.1)

and corresponding parabolic subgroup of the form(
aAB 0

cA′B dA′
B′

)
(4.2)

where each entry is a (2|1) × (2|1) matrix. The
Levi subalgebra (under which our fields trans-

form) is sl(2|1) ⊕ sl(2|1)⊕C (corresponding to
the block diagonals), where the first sl(2|1) sub-
algebra is carried by un-primed indices, and the

second by primed indices. We may choose a local

coset representative s(X), as follows:

s(X) =

(
1 X

0 1

)
∈ SL(4|2) (4.3)

5
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where each element is a (2|1)× (2|1) matrix, and

X =

(
λα xαα̇

y πα̇

)
. (4.4)

The important point here is that it takes two

coordinate patches to cover analytic superspace.

If we denote these two sets by U and U ′ and
put primes on the coordinates for U ′ then in the
overlap, the two sets are related as follows:

x′ = x− λπ
y
,

λ′ = − 1
y
λ,

π′ = 1
yπ,

y′ = 1
y
.

(4.5)

Requiring our fields to be holomorphic on both

patches puts restrictions on the fields, which are

equivalent to the constraints on Minkowski space.

We illustrate this first, briefly, with the ex-

ample of the hypermultiplet [11]. This is the

representation of SL(4|2) with dilation weight
L = 1, R = 0, j1 = j2 = 0 but has a non-zero

Dynkin label a1 = 1. It therefore has the follow-

ing Dynkin diagram on analytic superspace:

• ◦ × ◦ •
0 0 1 0 0

(4.6)

We read from this diagram that the field is in-

variant under both sl(2|1) subalgebras (i.e. our
field has no super indices), but it does have a C

charge. Thus our field is specified by two local

holomorphic functionsW (x, λ, π, y) andW ′(x′, λ′, π′, y′)
on U and U ′ respectively, such that in the overlap
U ∩ U ′

W (x, λ, π, y) = yW ′(x′, λ′, π′, y′). (4.7)

From this one can show that it has only a short

expansion:

W (x, λ, π, y) = ϕ1(x) + yϕ2(x) + λ
αψα(x)

+ πα̇χα̇(x)− λαπα̇∂αα̇ϕ2
(4.8)

with all the components satisfying their equa-

tions of motion. This is the usual hypermultiplet

with two complex scalar fields and two complex

Weyl fermions, all of which are physical and on-

shell.

Consider next the N = 2 on-shell Maxwell

multiplet, which is usually a chiral field in su-

per Minkowski space. This has dilation weight

1, R-charge -1 and all other quantum numbers

0. The Dynkin diagram for this field on analytic

superspace is

• ◦ × ◦ •
0 1 0 0 0

(4.9)

We can read off from the above Dynkin diagram

exactly how the fields transform under the Levi

subalgebra. In particular, it transforms non-triv-

ially under the first sl(2|1) superalgebra. In fact,
we have a field with one down-stairs un-primed

super index. Again we have two local holomor-

phic fields on U and U ′ which we denote WA =
(Wα,W ) andW

′
A = (W

′
α,W

′), and one can show
that these are related as follows in the intersec-

tion:

Wα = yW ′
α (4.10)

W = W ′ − 1
y
λαWα (4.11)

giving us the following result:

Wα = ρ1α + yρ2α + λ
βFαβ − πα̇∂αα̇C

− λβπβ̇∂ββ̇ρ2α

W = C − λαρ2α
(4.12)

again with all the components satisfying their

equations of motion. These components are all

on-shell and we have reproduced theN = 2 Max-

well multiplet which is given on Minkowski space

by a chiral field satisfying the second order con-

straint (3.14).

As a final example, consider the N = 2 su-

perconformal stress-energy multiplet. On super

Minkowski space it is a scalar superfield T satis-

fying

DαiD
α
j T = 0. (4.13)

It has Dilation weight 2, and all other quantum

numbers are 0. On analytic superspace it has the

Dynkin diagram

• ◦ × ◦ •
0 1 0 1 0

(4.14)

and from this we see that it is given by the su-

perfield TA′A. It has been explicitly checked that

this does indeed give the correct on-shell compo-

nents. This representation can be obtained ex-

plicitly in two different ways on analytic super-

space: firstly by multiplying a Maxwell field and

6
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its conjugate together

TA′A =WA′WA (4.15)

and secondly by multiplying two hypermultiplet

fields together with a derivative:

TA′A =W1∂A′AW2 −W2∂A′AW1. (4.16)

5. Conclusion

In this talk we have shown how to obtain rep-

resentations of the superconformal group on cer-

tain coset spaces of this group. We claim that

any representation may be given as a tensor field

on almost any superflag manifold, if we allow the

fields to transform under supergroups. On some

spaces the fields may require constraints, whereas

on others, in particular analytic superspaces, no

constraints are required. This facilitates the ten-

soring together of different representations. The

super Dynkin diagrams provide a simple way of

giving all the information required for putting

representations on coset spaces.

Superfield representations of the supercon-

formal group are important in the AdS/CFT

correspondence. For example, we believe it is

possible to obtain all N = 4 superconformal rep-

resentations explicitly by multiplying copies of

the Maxwell superfield and applying derivatives

on (4, 2, 2) analytic superspace. The formalism

should be useful when considering correlation func-

tions in super Yang Mills theories [17]. There

also appears to be a similarity with the oscil-

lator construction of superconformal representa-

tions [5].
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