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Abstract: I review some recent results in the study of regular four dimensional BPS black holes in

toroidally compactified type II string (or M) theory. One of these achievements consists in having

written the generating solution of 1/8 BPS black holes in the N=8 theory in a form which could be

easily described by suitable configurations of D-branes in the weak string coupling regime of both

type IIA and IIB theories. The microscopic parameters characterizing these configurations have been

related in a precise way to the supergravity (macroscopic) parameters of the solution. This achievement

opens up the possibility of systematically studying the microscopic properties of any regular BPS black

hole solution of the N=8 theory.

O ne of the main issues of the “second string

revolution” (1995) is the concept of string

dualities which provided a new insight into the

non–perturbative side of the known superstring

theories. These dualities are mappings between

regimes of different superstring theories (some of

them have been verified while other just conjec-

tured). Their existence naturally induces to con-

sider the known superstring theories as pertur-

bative realizations on different backgrounds of a

fundamental theory of gravity (FTG) whose gen-

eral formulation however is still missing. It is

known that the low energy limit of superstring

theory is described by supergravity. Although

supergravity in this picture is regarded just as

a macroscopic theory, it is expected to possess

important informations about the FTG. Indeed,

it has been argued [1] that the largest (contin-

uous) global symmetry group U of the super-

gravity field equations and Bianchi identities at

classical level should encode the definition, as a

suitable discrete group U(Z), of the conjectured

superstring U–duality, namely the ultimate du-

ality connecting all superstring theories realized

on various backgrounds. This duality is thus ex-

pected to be an exact symmetry of the FTG. Un-

fortunately not much is known about the group

U(Z), starting from the very definition and its

action on superstring states. On the other hand

the action of the group U on the supergravity

solutions is, in principle, known.

A fundamental role in probing superstring

dualities has been played so far by the BPS black

hole solutions of supergravity. These solutions

are characterized by the property of preserving

a fraction of the original supersymmetries, and

this feature protects their physical quantities, to

a certain extent, from quantum corrections. As a

consequence of their supersymmetry, BPS black

holes in supergravity are expected to correspond

to exact solutions of superstring theory. The

BPS condition moreover is U–duality invariant.

This allows to characterize these supergravity so-

lutions within orbits of the continuous U–duality

group, defined by a certain number ofU–invariants

{Ik} (e.g. the entropy). All the physical prop-
erties of the BPS solutions entering a same U–

duality orbit are expected to be encoded in the
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corresponding generating solution. The generat-

ing solution of BPS black holes is defined, within

a certain supergravity theory, as the solution de-

pending on the least number of parameters such

that the invariants {Ik} are free for a certain
choice of the boundary conditions. As a conse-

quence of its definition, by acting on the gener-

ating solution by means of U one recovers the

whole U–duality orbit. A suitable discrete set

of points within this orbit should correspond to

superstring black holes (non–perturbative solu-

tions) connected by the action of U(Z) and which

therefore represent different descriptions of a same

solution within the FTG (see figure below). The
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Classical Supergravity.

Superstring Theories

microscopic degrees of freedom described by the

FTG are indeed related to invariants of the group

U(Z). Pinpointing the exact correspondence be-

tween the macroscopic (supergravity) and micro-

scopic descriptions (e.g. in terms of D–branes in

a suitable regime) of a generating solution, one

would in principle be able to study systematically

the microscopic realization of a generic solution

in the same orbit. Moreover this could be the

first step in order to unravel the action of U(Z)

on stringy objects in higher dimensions and to

ultimately deduce their fundamental degrees of

freedom.

Here we review some recent results in the

study of four dimensional regular BPS black holes

within toroidally compactified type II superstring

(or M) theory. The relevant low–energy descrip-

tion for these solutions is four dimensionalN = 8

supergravity. In section 1 we shall start address-

ing the question: how much can we learn at clas-

sical supergravity level about the microscopic de-

scription of a BPS solution? A possible answer

will lead us to discuss a mathematical analy-

sis carried out in [2] which provides an intrinsic

group theoretical characterization of the scalar

and vector fields in the D = 4, N = 8 theory

in terms of dimensionally reduced type II fields.

The geometrical framework so defined turns out

to provide the convenient “laboratory” in which

to systematically study the microscopic descrip-

tions of BPS solutions and their duality relations.

Using these tools one can then characterize R–

R charged generating solutions of regular BPS

black holes as elements of a suitable equivalence

class defined with respect to the action of S and

T dualities. This result is discussed in section 2

and allows us to formulate the precise correspon-

dence, worked out in [3], between the parameters

defining two T –dual R–R charged microscopic

descriptions (in type IIA and IIB settings) of the

generating solution and the supergravity quanti-

ties related to its macroscopic description. This

final goal is dealt with in section 3.

1. Supergravity Laboratory.

The only prediction which may be drawn at clas-

sical supergravity level on the microscopic de-

scription of a BPS solution is clearly limited just

to the background fields which couple to it. This

can be done for instance by associating each su-

perstring scalar and vector zero–mode with quan-

tities intrinsic to the U–duality group of the low–

energy supergravity (see [4, 2]).

The D = 4, N = 8 supergravity is a max-

imally extended supersymmetric theory, i.e. it

has 32 supercharges. Its bosonic sector consists

of the graviton, 70 scalar fields, spanning the ho-

mogeneous manifold Mscal = E7(7)/SU(8), and

28 vector fields. The latter are related to a vec-

tor of 56 quantized charges (pΛ, qΣ), which trans-

forms in the Sp(56) of E7(7), and a central charge

matrix ZAB entering the local realization on the

moduli space of the supersymmetry algebra and

transforming in the 28 of SU(8). The former

charges are moduli–independent and should be

regarded just as supergravity parameters, while

the latter are moduli dependent and are related

to the physical charges, i.e. the actual charges
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one would measure in the asymptotically flat ra-

dial infinity of a black hole solution1.

The U–duality group of the classical theory

is U = E7(7) [5]. It acts as a generalized electro–

magnetic duality, i.e. it has a non–linear ac-

tion on the scalar fields and a linear (symplec-

tic) action on the vector of quantized charges.

As previously mentioned, the D = 4, N = 8

theory describes the low–energy limit of type II

superstring theory on T6 (or M–theory on T7).

The first step towards a group theoretical char-

acterization of the ten–dimensional origin of the

scalars and charges in this supergravity model is

to use a linear algebraic description of the scalar

fields. This is achieved by adopting the solvable

Lie algebra (SLA) parameterization of the scalar

manifold [4, 6, 7], which consists in describing

the scalar fields as local parameters of a solvable

Lie algebra which generates (globally) the scalar

manifold as a solvable Lie group. Homogeneous

non–compact manifolds of symmetric type like

Mscal do admit such a representation:

Mscal = Exp(Solv(U)) (1.1)

The algebra Solv(U) is defined by the Iwasawa

decomposition of E7(7) and can be written as

Solv(U) = C ⊕ N , where C is the Cartan subal-
gebra of E7(7) while N is a nilpotent subalgebra
of E7(7) generated by all the shift generators cor-

responding to positive roots. In this framework

a one to one correspondence between the scalar

fields and the generators of Solv is defined.

Two relevant duality groups for our discus-

sion are the S = SL(2, R) and T = O(6, 6) sub-

groups of U , defined as the continuous counter-

parts at the classical level of the discrete S and

T superstring dualities. Since these dualities are

the largest preserving the R–R and NS–NS iden-

tities of the fields, decomposing Solv(U) with

respect to Solv(S) × Solv(T ) one may achieve
an intrinsic characterization of the R–R and NS–

NS fields at classical supergravity level. On the

other hand the dimensional reduction of type II

superstring to four dimensions may be performed

through intermediate steps which define, in the

low–energy limit, higher dimensional maximal su-

pergravities, with their own U–duality group at
1Our analysis is restricted just to static, spherically

symmetric black holes.

tree level. Fixing then the embedding of Solv(UD>4)

within Solv(U) for various D > 4 allows to iden-

tify in a consistent way the scalar fields of the

N = 8 theory, as associated with the correspond-

ing generators of Solv(U), with dimensionally re-

duced type II zero–modes.

On the vector field side, it is convenient to

work with a set of physical charges (yΛ, xΣ) (trans-

forming under SU(8)) which are expressed in the

same basis of weights {~λ}, generating the 56 of
U , as the quantized charges (p, q). These charges

are obtained from the vector (ReZAB, ImZAB)

through a suitable rotation and are related to the

quantized charged (p, q) by a moduli–dependent

symplectic transformation which makes them quan-

tized as well [2]. Decomposing the weight basis

{~λ} with respect to the action of the higher di-
mensional U–dualities UD>4 it was possible to

associate consistently with each weight ~λ a one–

form electric of magnetic potential in four dimen-

sions deriving from suitable ten dimensional type

II zero–modes.

As a result of this first group theoretical anal-

ysis an N = 8 algebraic dictionary [2] could be

established on the weight lattice ΛW (U) of U in

which the directions (namely Cartan generators

in C) and the positive roots are associated with
scalar fields (through the SLA parameterization)

and the weights {~λ} with electric and magnetic
one–form potentials, each of these fields having

a specific ten dimensional characterization.

The generating solution of regular BPS black

holes in the D = 4, N = 8 model has been

shown to be a solution of a smaller N = 2 trun-

cation, namely the STU model [8]. The clas-

sical U–duality group of the latter is USTU =

SL(2, R)3 ⊂ U , the scalar manifold has the form
MSTU = USTU/SO(2)

3 and is generated by a

solvable Lie algebra SolvSTU parametrized by

just three dilaton fileds bi and three axions ai. In

the light of the previously defined algebraic dic-

tionary, different microscopic descriptions of the

generating solution can be put in correspondence

with different embeddings of the STU model within

the N = 8 one (defined by the embedding of the

corresponding solvable Lie algebras and charge

weights2).

2In other words, by the embedding of the weight lat-
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Dualities relating different embeddings of the

STU model can be described in terms of the ac-

tion on ΛW (USTU ) of automorphisms (Aut) of

the relevant duality algebra [2]. In order to char-

acterize the generating solution as charged with

respect to R–R or NS–NS fields, we would need

then to consider the action of the S×T dualities
through their authomorphism group (Aut(S ×
T )). The Dynkin diagram of the T algebra is

D6. It has inner and outer automorphisms, the

latter being related, through Weyl transforma-

tions, to the only symmetry of D6 (for a study

of Weyl duality transformations in supergravity

see [9]). These outer automorphisms are partic-

ularly interesting since they are not a symmetry

and can be thought of as relating two different

descriptions of the same theory, namely the type

IIA and type IIB ones. Indeed, using the SLA

representation it was shown in [2] that the outer

automorphisms of T correspond to a “large ↔
small radius” T –dualities along an odd number

of directions inside T6. From the algebraic view-

point these automorphisms map U = E7(7) into

an isomorphic algebra U ′ constructed from dif-
ferent T –weights. The two T –dual weight lat-

tices ΛW (U) and ΛW (U
′) differ only in the R–R

weights (spinorial weights of T ) and naturally fit

respectively the type IIA and type IIB descrip-

tions of the N = 8 theory. Therefore, in order to

accommodate all the T –dual descriptions of the

generating solution, the N = 8 algebraic dictio-

nary ought to be extended to ΛW (U) ⊕ ΛW (U ′)
(see tables 2 and 3 of [2]).

2. Regular BPS black holes with R–

R charge.

BPS black holes in the D = 4, N = 8 theory

preserving different fractions of the original su-

persymmetry have been extensively studied in

the literature (see for instance [10] and references

therein). It has been shown that the only regu-

lar ones (i.e. having a finite horizon area) are

those preserving a residual N = 1 supersymme-

try. This property is equivalent to the existence

of aKilling spinor, i.e. a direction in the spinorial

parameter space, along which the supersymme-

tices: ΛW (USTU ) ⊂ ΛW (U).

try shifts of the fermionic fields vanish, on the

solution. The latter condition may be in turn

restated in terms of a system of first order differ-

ential equations in the background fields, which,

as shown in [11], have a fixed point for the scalar

fields at the horizon (r = 0) depending only on

the quantized charges (p, q).

The physical charges of a BPS black hole so-

lution, as previously mentioned, are related to

the (antisymmetric) central charge matrix ZAB
which depends on the point on the moduli space

φ0, representing the boundary condition at radial

infinity of the scalar fields, as well as on the quan-

tized charges. The U–duality invariants {Ik} of
the solution are given by all the SU(8) invari-

ants which can be built out of ZAB. Indeed,

acting by means of a U–duality transformation

on the scalar fields and the quantized charges,

the central charge matrix will transform under

a corresponding SU(8) transformation. These

invariants are five and on the orbit of regular

BPS black holes they are independent parame-

ters. A way of expressing them is in terms of

the norm of the central charge skew–eigenvalues

Zα (α = 0, . . . , 3) and their overall phase, i.e.

{Ik} = {|Zα|, Θ}. By suitably combining them
it is possible to obtain a moduli–independent in-

variant, namely the quartic invariant J4(p, q) of

the 56 of E7(7). This is the only invariant char-

acterizing the near–horizon geometry of the so-

lution. It is indeed related to the area of the

horizon and, through the Bekenstein–Hawking

formula, to the entropy of the black hole: S =

π
√
J4.

Consistently with the definition outlined in
the introduction, the generating solution depends
on five independent charges of which the invari-
ants {Ik}, computed on the corresponding point
φ0 of the moduli space at infinity, are indepen-
dent functions. This solution can be described
within a STU model, which may be characterized
as the smallest consistent truncation of the N =
8 theory on which the four Zα are independent.
This model has, besides the six scalars ai, bi pre-
viously introduced, four vector fields (one gravi–
photon and three matter vectors) which give rise
to eight quantized charges (pα, qβ) and eight phys-
ical charges (yα, xβ). Using the N = 8 algebraic
dictionary, two T –dual embeddings STU1, STU2
of the STU model, for which the charges were

4
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related to suitable R–R one–forms, were worked
out in [2]. These two descriptions of the fields
in the STU model in terms of E7(7) weights are
mapped into each other through an outer auto-
morphism of T , which is interpreted, in the SLA
formalism, as a “large ↔ small radius” duality
along the directions x5, x7, x9 of T6 (in our nota-
tion the compact directions are x4, . . . , x9 while
the non–compact are x0, . . . , x3). One embed-
ding (STU1) can be indeed consistently described
in the type IIA setting while the other (STU2) in
the type IIB one. In particular, from the N = 8
algebraic dictionary, it is possible to character-
ize the axions of the STU1 embedding as deriv-
ing from the antisymmetric tensor BMN ({ai} =
{B45, B67, B89}) while those in STU2 as deriving
from the metric GMN ({ai} = {G45, G67, G89}).
As far as the vector fields are concerned, in an
analogous way the charges (yα, xβ) in the type
IIA embedding STU1 are associated with 1–form
(magnetic and electric) potentials deriving from
the following components of the ten dimensional
R-R fields AM , AMNP :

(yα) ↔ (Aµ456789, Aµ6789, Aµ4589, Aµ4567)
(xβ) ↔ (Aµ, Aµ45, Aµ67, Aµ89) (2.1)

while for the type IIB embedding STU2 this cor-
respondence between charges and components of
the R–R forms AMN , AMNPQ reads:

(yα) ↔ (Aµ468, Aµ568, Aµ478, Aµ469)
(xβ) ↔ (Aµ579, Aµ479, Aµ569, Aµ578) (2.2)

From this background field prediction and from

the values of the physical charges of the generat-

ing solution at infinity (for a suitable choice of the

boundary conditions), two T –dual D–brane de-

scriptions, corresponding to the embeddings dis-

cussed above, can be consistently worked out and

precise relations established between the parame-

ters defining the macroscopic (supergravity) and

microscopic (D–brane) descriptions of the gener-

ating solution [3]. Finally, acting on STU1,2 by

means of Aut(S × T ) one could define an equiv-
alence class of R–R charged embeddings of the

STU model (yielding all the R–R charged gener-

ating solutions) within the N = 8 theory.

3. The Miscoscopic Description.

We refer to [3] for the explicit macroscopic de-

scription of the generating solution in terms of

harmonic functions, while in the present section

we shall discuss its two previously mentioned mi-

croscopic realizations. For a suitable choice of

the point on the moduli space at infinity the five

independent physical charges of the generating

solution have the following form: (0, y1, y2, y3, x0,

x1, x2, 0) with x1 = −x2. As previously antici-
pated, bound states of D–branes in the type IIA

and IIB pictures coupled to the forms in eqs.

(2.1) and (2.2) respectively and giving rise to

the above effective charges, were found. On the

type IIB front the microscopic system consists of

N0, N1, N2, N3 D3–branes arranged within T6
in such a way to preserve N = 1 supersymmetry,

this happening if the relative rotation between

each couple of D3–brane is a SU(3) rotation. The

configuration is depicted in table 1.

Let us just no-
φ1 φ2 φ3

N0 π/2 π/2 π/2

N1 π/2 π 0

N2 0 π/2 π

N3 π + θ −θ π/2

Table 1: The position of the

D3–branes on the compactify-

ing torus; φi (i = 1, 2, 3) is

the angle on the (x2i+2, x2i+3)

torus and θ is a generic non–

trivial angle.

tice that, due to the

non–trivial angle θ,

the fourth set of D3–

branes,N3, induces

charges along the

3–cycles (469), (579),

(479) and (569). The

corresponding (T –

dual) type IIA sys-

tem consists of a set

of D0–branes and

three sets of D4–

branes along the four–cycles (6789), (4589) and

(4567) . In addition, there is a magnetic flux

switched on the world volume of the latter (i.e.

along (4567)) which is proportional to a rational

number γ = p/q, where the integers p, q are re-

lated to the angle θ characterizing the type IIB

configuration by the condition: q sin θ = p cos θ.

This flux induces an effective D0 charge and ef-

fective D2 charges along the two–cycles (45) and

(67)3. Notice that the presence of this flux is

also consistent with the fact that the axions in

the type IIA embedding are interpreted as com-

ing from the BMN tensor. Indeed, this tensor

couples to the D4–brane world volume trough a

gauge invariant combination with the flux den-

sity: F = 2πα′F + B̂ (B̂ being the pull–back of
3These effective charges derive from Chern–Simons

couplings of the magnetic flux to the one and three–form

potentials in the theory on the D4–brane world volume.

5
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the B field).

The macroscopic generating solution [3] is

expressed in terms of harmonic functions depend-

ing on the quantized charges (pΛ, qΣ) and hence,

via a symplectic transformation, for given asymp-

totic values of the moduli, on the charges (yΛ, xΣ)

(see section 2). Therefore, taking into account

relations (2.1) and (2.2), one can express the

values of the brane charges along the different

cycles in terms of the four dimensional physical

charges (yΛ, xΣ) and achieve a precise matching

between the parameters characterizing the mi-

croscopic and the macroscopic configurations:

N0 , N1 , N2 , N3 , θ ←→ x0 , x1 , y1 , y2 , y3

The precise correspondence is illustrated in table

2.

type IIB Charge type IIA

D3(468) 0 D6 y0

D3(568) N1 D4(6789) y1

D3(478) N2 D4(4589) y2

D3(469) N3q
2 D4(4567) y3

D3(579) N0 + p
2N3 D0 x0

D3(479) −p q N3 D2(45) x1

D3(569) p q N3 D2(67) x2

D3(578) 0 D2(89) x3

Table 2: The correspondence between type IIB and

type IIA charges on the different cycles of the com-

pactifying torus.

The important feature of our solution is that

its axionic nature (i.e. ai not identically zero)

is related to the non vanishing of the charge x ≡
x2 = −x1. The latter is proportional to the mag-
netic flux density in the type IIA picture (which

is essentially γ) or to tg θ in the type IIB frame-

work: x ∝ γ = tg θ. As x → 0 we end up

with a purely dilatonic four parameter solution

described by a system of D0 and D4–branes with-

out magnetic flux (γ → 0) or by a system of or-
thogonal D3–branes as in table 1 with θ = 0.

Upon use of table 2 one may express the
quartic invariant of E7(7), J4 (which is gener-
ally expressed in terms of the quantized charges
(pΛ, qΣ) or equivalently of (y

Λ, xΣ)) as a function
of the microscopic parameters. Hence, remem-
bering that for the entropy the following relation
holds, S = π

√
J4, one may express the latter

in terms of the microscopic parameters, giving a
prediction for its microscopic evaluation, [3] :

Smicro = (3.1)

2π

√
N1N2N3 q2

[
N0 + p2N3 − 1

4
p2N3

(N1 +N2)
2

N1N2

]

This is the predicted expression for the entropy

of the generating solution and should clearly be

derived via microscopic counting techniques. This

important goal has been recently achieved in [12].
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