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Abstract: We give a brief review of our recent work on non-linear self-dual N = 1, 2 manifestly
supersymmetric gauge theories.

1. Introduction

The original motivation for our work on non-

linear self-duality in supersymmetric systems was

sparked by some published proposals of the N =
2 supersymmetric Born-Infeld action. Certainly,

the requirement of the correct N = 0 limit is a
necessary condition, but, as it has already been

remarked in the work of Cecotti and Ferrara [1]

in the N = 1 case, this is not sufficient. To

make the problem well-defined, one should im-

pose additional conditions the supersymmetric

Born-Infeld action should satisfy, e.g. that it is

the effective world-volume action of a D3-brane

embedded in six-dimensional Minkowski space-

time. 1

The appropriate approach to arrive at the

‘correct’ Born-Infeld action would be to look for

the action for the Goldstone multiplet of the spon-

taneous N = 4 → N = 2 breaking. This would
be the generalization of the procedure by which

Bagger and Galperin [2] (see also [3]) rederived

the N = 1 Born-Infeld action of Cecotti and Fer-
rara, but now with the ambiguity removed. The

choice of the Goldstone multiplet is not unique,

but if we require that the resulting action al-

lows for the interpretation as the effective world-

volume action of a D3 brane in d = 6, we have to

use the gauge multiplet as the Goldstone multi-

plet. The reason is that it is the only irreducible

N = 2 massless supermultiplet which contains,
along with the gauge field, two real scalars and

1We want to note in passing that a similar ambiguity

also exists in the non-abelian generalisation of the Born-

Infeld action, supersymmetric or not.

eight real fermionic components, which are inter-

preted as the Goldstone fields of spontaneaously

broken translations transverse to the brane and

of the eight spontaneously broken supercharges,

respectively.

The generalization of this construction to the

N = 2 Born-Infeld action has not been carried
out yet, and we have no progress to report on

this. The major obstacle is the absence of an

off-shell superfield formulation of N = 4 SYM.
An alternative approach, which we will per-

sue, relies on the observation, valid for N = 0, 1,
that the Born-Infeld action is invariant under

electric-magnetic duality, or, as we will explain,

the Born-Infeld action is a solution of the self-

duality equation 2. The self-duality equations

were first derived by Gibbons and Rasheed in

[4, 5] based on earlier work by Gaillard and Zu-

mino [6, 7, 8] and were generalized to the super-

symmetric case, N = 1 and 2, in [9]. Further
generalizations with matter fields and/or tensor

fields and their supersymmetric extensions, have

been reviewed in [10], where references to the

original papers can be found.

2. Non-linear electrodynamics

Non-linear electrodynamics is the simplest non-

trivial system which exhibits self-duality. It has

a long history and goes back to the attempt of

2In the literature one often refers to self-dual sys-

tems as those systems which are self-dual under Legen-

dre transformations. One can show that solutions to the

self-duality equation always possess this property. The

approach via the self-duality equations turns out to be

much simpler, though.
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Born and Infeld to modify Maxwell’s equations in

such a way that the field and the energy of a point

particle stay finite. That led to the Born-Infeld

Lagrangian, whose special symmetry properties

were first discussed by Schrödinger.

Consider an action S =
∫
d4xL of the form

L(F ) = −1
4
F 2 + Lint(F ) (2.1)

and define

G̃µν =
1

2
εµνρσG

ρσ(F ) ≡ 2 ∂

∂Fµν
L(F ) . (2.2)

Since the Bianchi identity ∂µF̃µν = 0 and the

equation of motion ∂µG̃µν = 0 have the same

form, it is natural to consider the duality trans-

formations(
G′(F ′)
F ′

)
=

(
A B

C D

)(
G(F )

F

)
(2.3)

with AD −BC 6= 0, A,B,C,D ∈ R.
There always exists an L′(F ′) such that G̃′(F ′) =

2 ∂
∂F ′L

′(F ′). In fact, considering infinitesimal trans-
formations,

(
A B

C D

) ' 1+ ( a b

c d

)
one finds

∆L ≡ L′(F )− L(F ) (2.4)

= (a+ d)L − 1
2
dG̃ · F + 1

4
bF · F̃ − 1

4
cG · G̃

where G · G̃ = GµνG̃µν , etc.
These considerations become non-trivial if

one requires self-duality, i.e. L′(F ) = L(F ).
Note that this does not imply that L itself is

duality invariant. In fact, it isn’t, but L− 14F · G̃
is. If one now assumes that (i) L is parity even

and (ii) L = − 14F 2 +O(F 4), one finds
• only U(1) ⊂ GL(2,R) transformations are
possible, and

• L(F ) needs to satisfy the duality equation

F · F̃ +G · G̃ = 0 . (2.5)

Note that this equation constitutes a strong re-

striction on L(F ).

For the supersymmetric generalizations to which

we turn momentarily, it is convenient to rewrite

the self-duality equation. For doing this we de-

fine

ω = α+ iβ , α =
1

4
F · F , β = 1

4
F · F̃ (2.6)

and

L(ω, ω̄) = −1
2
(ω + ω̄) + ωω̄Λ(ω, ω̄) = L(ω̄, ω)

(2.7)

where the last equality imposes parity invariance

and Λ = const+O(ω). In terms of Λ the duality
equation reads

Im

{
∂(ωΛ)

∂ω
− ω̄
(
∂(ωΛ)

∂ω

)2}
= 0 . (2.8)

The most prominent (non-trivial) solution of this

equation is the Born-Infeld Lagrangian

ΛB.I. =
g2

1 + g2Reω +
√
1 + 2g2Reω − g4(Imω)2

(2.9)

which is equivalent to

LB.I. =
1

g2

{
1−
√
− det(ηµν + gFµν)

}
(2.10)

where g is a dimensionful coupling constant. Again

with a view to the supersymmetric generaliza-

tion, we note that LB.I. can be written implicitly

as LB.I. = − 12 (χ+ χ̄) where the complex field χ
satisfies the non-linear constraint χ + 1

2g
2χχ̄ −

ω = 0.

For generalizations a) to several U(1) fields,

b) couplings to scalars c) and/or (NS,NS) and

(R,R) B-fields, d) p-forms in d > 4, c.f. [10] and

references therein.

3. Self-duality and N = 1 SUSY
Again, we will discuss here only the simplest sit-

uation: pure non-linear SUSY electrodynamics.

Generalizations (e.g. coupling to chiral multi-

plets, (NS,NS) and (R,R) multiplets, tensor mul-

tiplets can be found in [10]).

Supersymmetric electrodynamics is described

in terms of a chiral (Wα) and an anti-chiral su-

perfield (W̄α̇)
3. In the following we simply give

the N = 0 → N = 1 generalization of vari-

ous necessary quantities. Field strength: F →
(W, W̄ ); action: S[F ] → S[W, W̄ ]; G̃ = 2 ∂L

∂F
→

(iM = 2 δSδW , −iM̄ = 2 δS
δW̄
); Bianchi identity:

dF = 0→ DαWα = D̄α̇W̄ α̇, equation of motion:
3Our notation is that of [11] and [12], where all neces-

sary details on N = 1 SUSY can be found.

2
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dG = 0 → DαMα = D̄α̇M̄ α̇. For the duality
equation one finds

Im

∫
d4xd2θ (W 2 +M2) = 0 . (3.1)

Any supersymmetric self-dual non-linear electro-

dynamics must be a solution of eq.(3.1). To solve

the self-duality equation we define the anti-chiral

superfield u = 1
8D
2W 2 and make the ansatz (c.f.

(2.7))

S =
1

4

∫
d6zW 2+

1

4

∫
d6z̄W̄ 2+

1

4

∫
d8zW 2W̄ 2Λ(u, ū)

(3.2)

In terms of Λ, the self-duality equation can be

written in the form

Im

{
∂(uΛ)

∂u
− ū
(
∂(uΛ)

∂u

)2}
= 0 (3.3)

which is to be compared to eq.(2.8). To de-

rive this form of the self-duality equation the

use of the Grassmann-oddness of W , i.e. the

property W 3 ≡ 0, is crucial. If we go to com-
ponent fields, Wα ∼ {Fµν , λα, D}, we find u =
ω− 12D2+O(λ2). We can now use the equations
of motion for the photino λ and the auxiliary

field D to set them both to zero. This way we

get from every solution of eq.(3.1) a solution of

eq.(2.5). Turning the argument around, we learn

that every self-dual model of the form (2.7) has

an extension which is self-dual under manifestly,

i.e. expressible in terms of superfields, N = 1 su-
persymmetric duality rotations and which allows

for a consistent (with the equations of motion)

truncation to the non-supersymmetric model. 4

Given the non-supersymmetric Born-Infeld

action, it is now immediate to find its supersym-

metric extension. Defining A± = g2

8 (D
2W 2 ±

D̄2W̄ 2) it reads

SB.I. =
1

4

∫
d6zW 2 +

1

4

∫
d6z̄W̄ 2 (3.4)

+
g2

4

∫
d8z

W 2W̄ 2

1 + 12A+ +
√
1 +A+ +

1
4A
2−

Similarly as in sect. 2, we can rewrite this as

SB.I. =
1

4

∫
d6z χ+

1

4

∫
d6z̄ χ̄ (3.5)

4In the non-linear case there are other, besides the

trivial, solutions to the equation of motion for the aux-

iliary field D. They do, however, not lead to a non-

supersymmetric self-dual system [13].

where the chiral superfield χ is defined via χ +
1
4χD̄

2χ̄ = W 2. Even though it is Grassmann

even, it is nilpotent, χ2 = 0, a property which

follows from W 3 = 0.

We want to stress that while it was quite a

burden for Bagger and Galperin to demonstrate

self-duality of this action, it is an immediate con-

sequence of our approach. Bagger and Galperin

also showed that SB.I. is the action for the Gold-

stone multiplet (W ) associated with N = 2 →
N = 1 partial supersymmetry breaking. It pos-
sesses a second, non-linearly realized supersym-

metry. It is, however, not the unique N = 1 ex-
tension of the non-supersymmetric Born-Infeld

theory: the action is not determined uniquely

if one insists on the requirement of the correct

N = 0 limit only. But it is the requirement of
either self-duality or the presence of a second su-

persymmetry, which make the action unique.

4. Self-duality and N = 2 SUSY
In this final section, we will discuss self-duality

of systems with manifest N = 2 supersymmetry.
Again, our main focus will be the Born-Infeld

action.

We work in N = 2 superspace with coordi-
nates ZA = (xa, θαi , θ̄iα̇), i = 1, 2. The relevant
superfield is a chiral field strength W which is

constrained to satisfy the Bianchi identity DijW =
D̄ijW̄ , Dij = DαiDjα. 5 Given an arbitrary ac-
tion of the form S[W , W̄] we define iM ≡ 4 δS

δW
and −iM̄ ≡ 4 δS

δW̄ in terms of which the equa-
tions of motion are DijM = D̄ijM̄. The N = 2
self-duality equation can be derived in much the

same way as before and one finds∫
d8Z (W 2 +M2) =

∫
d8Z̄ (W̄ 2 + M̄2) (4.1)

Only two solutions to this self-duality equation

are known in closed form:

• the N = 2 Maxwell action
S =

1

8

∫
d8ZW2 + 1

8

∫
d8Z̄ W̄2 (4.2)

• the N = 2 Born-Infeld theory

S =
1

4

∫
d8Z X + 1

4

∫
d8Z̄ X̄ (4.3)

5For N = 2 superspace notation we refer to [10] and
the references given there.

3
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where the chiral superfieldX satisfies X = XD̄4X̄+
1
2W2. This form of the action suffices to demon-
strate self-duality; this was done in [10]. A closed

form of the solution to the non-linear constraint

on X has not been found yet (of course, there is
no problem in constructing the perturbative solu-

tion of the constraint). The methods which were

successful at N = 1 do not apply, as the property
W 3 ≡ 0 does not generalize toW . That this sys-
tems can be consistently truncated to the N = 1
Born-Infeld action, was demonstrated by Ketov

in [14]. In [9] it was shown that, as expected,

this requirement does not fix the action uniquely.

That it has two non-linearly realized supersym-

metries, which would be necessary for this action

to qualify as the action for the Goldstone multi-

plet of partial N = 4 → N = 2 SUSY break-
ing, has not been demonstrated yet. In fact, we

now give arguments that this is not so (see also

[3, 10]). In fact, the low-energy effective action

on the world-volume of D3 branes in d = 6 should

have precicely this property. Its bosonic piece

should have the form

L = 1−
√
− det(ηµν + Fµν + ∂µφ∂ν φ̄) (4.4)

where the complex scalar φ describes the fluctu-

ations of the brane in its two transverse direc-

tions. The action has the expected shift symme-

try φ → φ + σ for constant complex parameter
σ. This identifies φ as the Goldstone field asso-

ciated with broken translation invariance. The

N = 2 version of this symmetry has the gen-
eral form W(Z) → W(Z) + σ +O(W , W̄). The
scalar component of the superfield W is (in gen-
ral non-linearly) related to the field φ. We have

shown explicitly in [10] that the above action,

even though it has the correct N = 1 limit, does
not have this shift symmetry.

There are two ways to proceed in searching

for the correct manifestly supersymmetric world-

volume action for the D3 brane in d = 6. The

first possiblility is the already mentioned general-

ization of the procedure of Bagger and Galperin

of explicitly constructing the action of the Gold-

stone multiplet with the hidden supersymmetries.

An alternative, which was proposed in [14], is to

first construct a manifestly (1,0) supersymmetric

Born-Infeld action in d = 6 and then reduce it to

d = 4. The shift symmetry would then be built

in. But this is not a simple task either, as we

indicated in [10].
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