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Abstract: I present a generalization of noncommutative gauge theories to the case of orthogonal and

symplectic groups. These theories represent effective theories of orientifold projections of type IIA

string theory at low energy.

1. Introduction

It is well–known that D–branes introduce a mod-

ification of our idea of space–time. For example,

the low energy configuration of many parallel D–

branes may be represented by SYM theories, [1],

in which matter fields are hermitean matrices,

say X i. The difference between the diagonal en-

tries of X i are interpreted as distances between

branes, and, when the distances are large they

are the only effective parameters. However at

small distances new parameters (the nondiago-

nal entries of X i, which are interpreted as open

string coordinates stretched between branes) be-

come relevant, so that actually the usual space–

time coordinates are replaced by matrices (with

ensuing noncommutativity).

The above picture is very suggestive and phys-

ical, but it is not very effective from the point

of view of space-time noncommutativity. It has

been realized recently that this noncommutativ-

ity surfaces in a very effective and manageable

way if in D-branes configurations as above we

switch one a constant NSNS B-field. The point is

that the components of a constant B-field which

are parallel to a Dp-brane can not be gauged

away [2, 3] and the worldvolume of these branes

become noncommutative [2, 3, 4]. In addition,

by computing open string states scattering am-

plitudes and extracting the massless poles con-

tributions, one can show that the low energy ef-

fective theory describing the system is the non-
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commutative U(n) (NCU(n)) theory [5, 6]. This

theory is obtained by replacing the usual prod-

ucts of fields by the star (Moyal) product [7].

One of the questions that arise immediately

is whether NCU(n) is the only noncommuta-

tive gauge field theory that makes sense. At

first sight, trying to define a noncommutative

gauge theory corresponding to subgroup of U(n)

does not look very promising: the product of two

gauge transformations valued in a Lie subalge-

bra of u(n) is not valued in the same Lie sub-

algebra. However the question admits in some

sense a positive answer [8]. It is indeed possi-

ble to find consistent noncommutative extension

for gauge theories corresponding to certain sub-

groups of U(n). The main point is that we can

define gauge transformations that close to form

a subgroup of the group of NCU(n) gauge trans-

formations even though the corresponding gauge

potentials and gauge transformations are not val-

ued in a classical Lie subalgebra of the unitary

Lie algebra u(n).

The above question is given an answer in two

different ways, one relying on purely gauge field

theory considerations and the other on string the-

ory. From the gauge theory point of view, it is

shown that it is possible to impose constraints

on the gauge potentials and the gauge transfor-

mation so that when the deformation parameter

vanishes we recover the ordinary orthogonal and

symplectic gauge theories. From the string the-

ory point of view we construct an orientifold pro-

jection of a brane configuration which gives rise

to the same amplitudes as the noncommutative
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orthogonal or symplectic gauge field theories in

the α′ → 0 limit.

2. Noncommutative SO(n) and Sp(n)

gauge theories

We work in Rd and use the Moyal bracket

(f ∗ g)(x) ≡ f(x)e
i
2
θµν
←

∂ µ
→

∂ νg(x). (2.1)

for functions in Rd. We define the algebra Aθ
as the vector space C∞(Rd) endowed with this

product.

The difficulty of defining a noncommutative

gauge theory based on a subgroup of SU(n) is

related to the fact that the Moyal product of two

gauge transformations valued in a proper sub-

algebra of u(n), is in general not valued in the

same subalgebra. However, in order to define a

gauge theory, it is enough to be able to define a

Lie algebra of gauge transformations. And this

is possible notwithstanding this difficulty. Let us

see how this may work.

To start with, we will work in a setting in

which θ has to be thought of as a parameter.

Accordingly, we will consider Aθ as an algebra of

power series in θ. This algebra is endowed with

an anti–automorphism r defined by

(.)r : f(x, θ) 7→ f r(x, θ) ≡ f(x,−θ). (2.2)

This map reduces to the identity on the gener-

ators xµ and reverses the order in the product:

(xµ1 ∗ . . . ∗ x
µ
n)
r = (xµn)

r ∗ . . . ∗ (xµ1 )
r.

First of all, we consider our groups as sub-

groups of U(n). In other words we keep the usual

antihermiticity condition on the u(n)–valued con-

nections A and gauge transformations λ.

A∗ij(x, θ) = −Aji(x, θ)

λ∗ij(x, θ) = −λji(x, θ). (2.3)

By convention, we use Greek letters for space-

time indices and i and j for matrix (group) in-

dices.

To define NCSO(n) gauge theories we select

gauge connections and transformations satisfying

the following constraints:

Arij(x, θ) = −Aji(x, θ)

λrij(x, θ) = −λji(x, θ) (2.4)

It is easy to see that these constraints are

preserved by gauge transformations. One can see

it componentwise. Alternatively, rewrite (2.4) in

the concise form A = −(At)r and λ = −(λt)r, by

using the matrix transposition t. Define ( (.)t)r ≡

(.)rt. The proof is now formally similar to the

usual one for U(n), replacing † with rt: (λ ∗A−

A∗λ)rt = Art ∗λrt−λrt ∗Art = −(λ∗A−A∗λ).

We anticipated above that due to (2.4), con-

nections and gauge parameters do not turn out to

be so(n)–valued. Nevertheless (2.4) introduces

restrictions on the matrix functions Aij . To see

this, let us write (2.4) more explicitly

Aij(x, θ) = −Aji(x,−θ)

λij(x, θ) = −λji(x,−θ) (2.5)

Inserting a power expansion in θ for A

Aµ(x, θ) = Aµ0 (x) + iθνρA
µνρ
1 (x) + . . . , (2.6)

we see that (2.4) implies that A0, A2, . . . are an-

tisymmetric and A1, A3 . . . symmetric. The her-

miticity condition (2.3) imposes that all the coef-

ficients A0, A1, ... be real. The same conclusions

hold for the power expansion of λ.

Up to now, A0, A1, . . . are unrestricted, ex-

cept for the just mentioned constraint. However,

if we want to make connection with string the-

ory, A1, A2, . . . should not introduce new degrees

of freedom, but be functionally dependent on A0.

In practice we will regard them as given by the

Seiberg–Witten map [7]:

Aµ(A0) = A
µ
0 −

i

4
θνρ{A0ν , ∂ρA

µ
0 +F

µ
0ρ }+O(θ

2);

(2.7)

(the presence of i is due the fact that Seiberg and

Witten use hermitean connections rather than

anti-hermitean ones, as we do). This is indeed

consistent: the term linear in θ is symmetric if

the constant part is antisymmetric. In fact, one

can also see that the next term is antisymmet-

ric, and so on; so we have complete accord with

(2.6).

To define a Yang–Mills NCSO(n) theory, let

A = A(x, θ) satisfy the constraint (2.4). The

action is the usual one

S = −
1

4

∫
ddxF

µν
ij Fjiµν , (2.8)

2
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where F is defined as

Fµν = ∂[µAν] +Aµ ∗Aν −Aν ∗Aµ. (2.9)

The action (2.8) is naturally gauge invariant un-

der NCSO(n) and positive. It reduces to the

usual one for SO(n) in the θ = 0 case.

It is rather straightforward to introduce mat-

ter fields in this context in a coherent way. For

example, suppose we want to introduce fermions

in the adjoint representation. We can define a

generalization of the SW map to such fields.

Let ψ0 be an ordinary (commutative) spinor

in the adjoint representation, which therefore trans-

forms as follows under an ordinary gauge trans-

formation

δλ0ψ0 = [ψ0, λ0] (2.10)

and let us postulate the following noncommuta-

tive gauge transformation for the corresponding

noncommutative field:

δλψ = ψ ∗ λ− λ ∗ ψ (2.11)

where λ = λ0+λ
′(λ0, A0), A = A0+A

′(A0) and

ψ = ψ0 + ψ
′(ψ0, A0); the primed fields are first

order in θ. We want to find a function ψ(ψ0, A0)

which transform as (2.11) when the correspond-

ing ψ0 transform as (2.10). This amounts to sat-

isfying the equation

ψ(ψ0, A0)+δλψ(ψ0, A0) = ψ(ψ0+δλ0ψ0, A0+δλ0A0)

(2.12)

The solution to first order in θ is

ψ(ψ0, A0) = ψ0 −
i

2
θµνψ1µν +O(θ

2) (2.13)

ψ1µν = {A0µ, ∂νψ0}+
1

2
{[ψ0, A0µ], A0ν}

It is easy to see that the noncommutative

orthogonal constraint

ψrt = −ψ (2.14)

is consistent with this map. Therefore they form

a representation of NCSO(n). In a similar way

one can introduce also the fundamental represen-

tation. The action terms containing these matter

fields are the usual ones with ordinary product

replaced by the noncommutative one.

3. A string theory origin.

We want now to derive the gauge theory we de-

scribed above from a brane configuration in string

theory in the limit α′ → 0.

In the commutative case, gauge theories with

orthogonal or symplectic groups are realized as

low energy effective actions of branes on orien-

tifold planes in type I theories. Since noncom-

mutativity is achieved by a non zero B field, and

this vanishes on the orientifold plane, one may

deem this search hopeless. However the question

is more subtle.

For the sake of definiteness, let us consider

type IA theory. This theory can be obtained in

two ways: as T-dual of type IB , or as an orien-

tifold of type IIA theory. In the second way, it is

from the very beginning a 10d theory if the initial

IIA is; in the first, it is of course compactified in

at least one direction, and one can make contact

with the other approach by taking this radius to

infinity. Either way, we obtain a 10D theory.

The symmetry of IIA theory which defines

the relevant orientifold is given by P9 · Ω, where

P9 : x
9 → −x9 is a spacetime reflection and Ω :

σ → π − σ is the worldsheet parity. So, the

orientifold plane is an eight-plane located at x9 =

0. Physics in the x9 > 0 region is locally the same

as the IIA one. However, strings always have an

image on the other side, and as a consequence

any spacetime field φ is reflected as

φ(x1, . . . , x8, x9) = ±φ(x1, . . . , x8,−x9), (3.1)

the sign being determined by the Ω parity. So, in

particular, the RR charges of image branes have

a relative ± according to their dimensionality.

To obtain the gauge groups we are looking for,

namely SO and Sp groups, we have to put branes

and their mirrors on the orientifold plane; so,

as far as we are concerned only branes whose

mirrors have the same RR charge survive – the

others meet their antibranes and annihilate. The

surviving ones are 0, 4, and 8-branes; the gauge

group on them is SO, Sp and SO respectively.

In this configuration of branes stuck on the

orientifold plane, let us now analyze the conse-

quence of a background B field. Since we are

really interested in its components parallel to

the orientifold, we set Bµ9 = 0, µ = 1 . . . 8. As

3
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for the remaining components, bearing in mind

that the B field is odd under worldsheet parity

[9] from (3.1) we see that Bµν(x
1, . . . , x8, x9) =

−Bµν(x
1, . . . , x8,−x9). So, we will consider a

configuration Bµν = bµνf(x
9), where f is odd

in x9. It is true that the B field is zero on the

orientifold, but strings which end on the branes

can stretch also outside, and the usual statement

that their interaction with B is a boundary term

is, in general, true only when B is constant. The

interaction term equals (Σ is the worldsheet of

the open string)∫
Σ

Bµνdx
µ ∧ dxν (3.2)

=

∫
Σ

d (Bµνx
µdxν)−

∫
Σ

dBµν ∧ x
µdxν

=

∫
∂Σ

Bµνx
µdxν −

∫
Σ

∂ρBµνdx
ρ ∧ xµdxν .

In the usual B = constant case, the first term of

the final expression is the boundary term which is

responsible for noncommutativity, while the sec-

ond vanishes. In the present case, the situation

is different: the first term is zero, due to the

vanishing of the B field on the orientifold plane

(branes are on the orientifold, so ∂Σ ⊂ O8), but

the second is∫
Σ

∂9f(x
9)bµνx

µdxν ∧ dx9. (3.3)

We choose f to be the step function ε(x9), which

is in fact the easiest field configuration one can

think of in this case. The factor ∂9f(x
9) becomes

a δ(x9), and this implies the integral concentrates

on the orientifold {x9 = 0}:∫
Σ∩O8

bµνx
µdxν . (3.4)

Now, as Σ ∩ O8 ⊃ ∂Σ, this provides a boundary

term which has exactly the form of the one which

usually accounts for noncommutativity.

That a system of Dp-branes on top of an

orientifold plane (Op-plane with p ≤ 8) in the

presence of a step function-like B field is a stable

system, can be seen also with an argument based

on supersymmetry, see [8].

One can now compute correlation functions

of strings attached to the branes. If we specialize

to gauge bosons, the corresponding vertex oper-

ator in the -1 picture is V (z) = ξij · (ψ + ψ̄)eikx,

where ξrt = −ξ. The three point functions, for

instance is

Tr {ξ1 · p2 ξ2 · ξ3 + ξ2 · p3 ξ3 · ξ1 + ξ3 · p1 ξ1 · ξ2} ·

·e−
i
2
p1µθ

µνp2ν + (1↔ 2)

where inner products are understood with re-

spect to the open string metric. This is the same

amplitude one finds starting from a noncommu-

tative gauge theory, but with the additional con-

straint ξ = −ξrt; thus it coincides with the field

theory we have suggested.
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