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Abstract: Branes have a world-sheet description in terms of boundary conformal field theory, which

allows to characterize possible branes for a given closed string background as possible conformal

boundary conditions for a CFT on the plane. The world-sheet approach accommodates phenom-

ena which seem to reach beyond the classical target space picture of branes and point towards a

non-commutative texture of branes. We discuss the appearance of non-commutative geometry within

brane physics for the example of branes in SU(2). In some respects, this situation is more complicated

than the widely discussed case of flat branes with constant B-field, but it still offers an approximate

classical description, where brane world-volumes are spherical or point-like conjugacy classes of SU(2).

The ’traditional approach to non-commutativity’ is based on a computation of the effective action

of low-lying brane excitations, which generically leads to Lagrangians that are ‘geometrical’ only in

an appropriate non-commutative sense. Concentrating on the infinite level limit of the SU(2) theory,

one finds a Yang-Mills-Higgs action on a fuzzy two-sphere (the truncation quantization of a sphere),

complemented by a Chern-Simons term. Studying solutions to the effective equations of motion with

the help of techniques from conformal perturbation theory, one is led to interpreting spherical branes

as bound states of point-like branes. We also discuss how a more direct, though somewhat specula-

tive, link between branes and non-commutative geometry can be established by defining an algebra of

’functions on the brane world-volume’ in terms of the boundary CFT data.

1. Introduction

In the past year, there has been a lot of ex-

citement and a lot of activity concerned with

the role of non-commutative geometry in string

theory; see e.g. Barbon’s talk for more details

and for references. That non-commutative, or at

least some non-classical geometry is important

for string theory has of course long been sus-

pected, simply because string theory in partic-

ular aims at quantising gravity. Even if one does

not want to use arguments about the metric be-

coming a quantum operator, and can conclude

[1] from Heisenberg’s uncertainty relations and

the existence of black holes that there are uncer-

tainty relations for the coordinates themselves, a

strong indication of non-commutative geometry.

∗Talk based on joint work with A.Yu. Alekseev, V.
Schomerus and D. Roggenkamp, and with J. Fröhlich and

O. Grandjean

Having this kind of reasoning in mind, the non-

commutative effects encountered in brane physics

are indeed somewhat unexpected: Gravity is not

involved, and moreover the new phenomena on

branes arise at energies much lower than the string

scale.

One of the main points we would like to make

here is that still, from the world-sheet point of

view, the appearance of non-commutative geom-

etry in low-energy brane physics is no more sur-

prising that the appearance of classical geome-

try: Both appear on the same footing. More

to the point, neither non-commutative geome-

try nor classical geometry are needed as an in-

gredient of the world-sheet theory, they merely

provide more or less convenient interpretations

added afterwards.

To support this perspective, we present in section

5 a world-sheet computation of the low-energy ef-
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fective action of open string attached to a brane

in SU(2). Geometry is never needed in the pro-

cess, but on reason for choosing this example is of

course that there is a competing classical target

picture of the situation. In particular, one can

observe how open string effects seem to ‘quan-

tise’ a classical brane world-volume, and non-

commutativity can be seen to be ultimately due

to non-locality of open string vertex operators.

Although the classical picture for brane in group

manifolds is still rather simple, concrete results

(like a LEEA) are difficult to obtain within the

target space setting: Group manifolds are sig-

nificantly less trivial than the flat backgrounds

mainly discussed in the string literature in that

are curved with non-vanishing Ricci tensor, and

the string equation of motion Rij ∼ HiklH
kl
j

implies that (to order α′) the target carries not
only a non-vanishing, but indeed a non-constant

B-field. Therefore, we expect branes in group

manifolds to exhibit non-commutative effects at

least as interesting as those for flat branes in con-

stant B-fields. The CFT computations of section

5 will show that this is indeed the case.

In the next section, we briefly review some el-

ements of the boundary CFT language needed

for the world-sheet description of branes. We

also collect some data on boundary conditions in

SU(2) WZW models for later use. Section 3 re-

view how non-commutativity appears in connec-

tion with flat branes in a B-field, mainly in order

to display the guidelines towards and open string

LEEA, be followed again later in the more in-

volved SU(2) case. The classical picture of branes

in group manifolds is sketched in Section 4, so

as to prepare a contrasting background for the

purely CFT manipulations in Section 5, which

lead to a LEEA for brane in SU(2). This action

can be recognised as a gauge theory (Yang-Mills

and Chern-Simons) on a fuzzy sphere, in accor-

dance with the qualitative discussion of Section

4. Investigation of solutions to the equations

of motion derived from the LEEA displays in-

teresting dynamics of these branes: In particu-

lar, spherical branes can be realised as boundary

states of point-like branes.

In spite of the generality and rigour of CFT cal-

culations, one cannot deny the efficiency (and

sometimes the beauty) of geometrical principles,

in particular when effective actions are extracted

from string theory. However, the existence of

non-commutative brane world-volumes shows that

classical geometry is too narrow a framework,

and that one should widen the scope of geometric

principles appropriately for application in string

theory. The concluding section contains some

rather speculative remarks on how to link the

world-sheet description of branes to non-commut-

ative geometry. In particular, we propose a pro-

cedure which assigns so-called spectral data – in

Connes’ framework, the defining data of a space

– directly to a boundary CFT.

The results presented in section 5 are taken from

[2, 3, 4], while the material of section 6 is part

inspired by [5] and of course by [6]. I would

like to thank V. Schomerus, A.Yu. Alekseev, D.

Roggenkamp and also J. Fröhlich and O. Grand-

jean for collaboration and numerous helpful and

enjoyable discussions.

2. Elements of boundary CFT

Here we collect some basic facts about conformal

field theory on the upper half-plane. Such bound-

ary conformal field theories provide the world-

sheet description of D-branes in the general sense

– they are nothing but conformal boundary con-

ditions for a given closed string background.

To such a closed string background there corre-

sponds a ‘bulk’ CFT on the plane, with sym-

metry algebra W ×W and a state space, whose
decomposition into irreducibles of the symmetry

algebra reads Hbulk = ⊕i,j Hi ⊗ Hj . There is
a one-to-one correspondence between Hbulk and
the space of conformal bulk fields (ϕij(z, z̄) and

descendants). The construction of a boundary

CFT for a given bulk CFT amounts to restrict-

ing the CFT to the upper half-plane in a consis-

tent way, keeping the local structure (the OPE

of bulk fields) in the interior.

The defining data of a conformal boundary con-

dition can be split into two parts: First, linear

conditions (‘gluing conditions’) that fix the sym-

metry of the boundary CFT. Secondly, choosing

the values of certain coefficients in a consistent

way.
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Choice of gluing conditions includes specification

of a sub-W -algebra Wop ⊂ W which contains

the Virasoro algebra, Vir⊂ Wop, and of a W -
algebra automorphism Ω : Wop −→ Wop that
acts trivially on the elements of Vir. Then we

demand that

W (z) = ΩW (z̄) (2.1)

for all W ∈ Wop and for z = z̄, i.e. along the

boundary of the upper half-plane (z = x + iy

with y > 0). If this conditions links the genera-

tors of left- and right-moving sub-symmetry alge-

brasWop, one can show that the boundary CFT
enjoys covariance under one copy of Wop. The
specific automorphism Ω e.g. enters the Ward

identities that hold in the theory, see e.g [7].

Let us look at two simple examples and give glu-

ing conditions for a system of D free bosons and

for non-abelian WZW models. In the first case,

we have W = U(1)D with generators Jµ = ∂Xµ

(analogously for the right-movers). The usual

gluing conditions are Jµ(z) = Jµ(z̄) (Neumann

conditions) and Jµ(z) = −Jµ(z̄) (Dirichlet con-
ditions). The first choice Ω = id is available in

every CFT, even though its interpretation de-

pends on the specific model, as we will see. For a

non-abelian WZW model, where W is generated
by currents Ja(z), there are a number of natural

gluing conditions,

Ja = Ja or Ja = AdhJ
a or Ja = Ω(o)Ja

for some outer automorphism of the underlying

Lie group (in case such automorphisms exist).

We will discuss these gluing conditions in more

detail in Section 4.

The second kind of data to fix when defining

a boundary condition are certain (OPE) coeffi-

cients. This has to be done in such a way that

various non-linear sewing relations are satisfied

[8, 9]. We will not go into details here but merely

note that the simplest of these coefficients are

those in the 1-point functions of primary bulk

fields,

〈ϕij(zz̄)〉α =
Aαij

|z − z̄|2hi . (2.2)

In contrast to CFTs on the plane, this expec-

tation value need not vanish for ϕij 6= 1, sim-
ply because translation invariance orthogonal to

the boundary is broken. Rather, there may be

various independent sets (labelled by α) of coef-

ficients Aαij which satisfy all sewing constraints.

Each such solution specifies a conformal bound-

ary condition, or a brane. In principle, once the

1-point functions are known one can compute ar-

bitrary correlation functions of bulk fields in the

presence of the boundary conditions (using the

bulk OPE). One can further determine the par-

tition function Zα(q) of the boundary CFT [8].

Within string theory, the Aαij specify tension and

charges of the brane α.

Let us describe a consistent set of Aαij for the

SU(2)k WZW model with diagonal bulk parti-

tion function (i.e. only i = j occurs) and for the

‘standard gluing condition’ Ω = id. Then one

can choose [8]

Aαi =
Sαi√
S0i

(2.3)

where S denotes the modular S-matrix for the

chiral characters. In particular, the labels α for

different boundary conditions (branes) run over

the same set as the labels i of the bulk primaries,

namely α = 0, 12 , . . . ,
k
2 ; the ‘0’ in (2.3) is for the

vacuum module. This kind of boundary condi-

tions exists for a large class of rational CFTs, it

is often called ‘Cardy-type boundary condition’.

Brane partition functions follow from(2.3) along

the lines of [8]; one obtains

Zα(q) ≡ trHαqL0−
c
24 =

∑
l

N lααχl(q) ; (2.4)

the Nkij denote the SU(2)k fusion rules, and the

summation runs over l = 0, 1, . . . ,min(2α, k −
2α). In the middle of eq. (2.4), the state space

Hα of the boundary CFT with boundary condi-
tion α appears; its states are in one-to-one cor-

respondence to the boundary fields of the theory

which will play an important role later on.

For completeness, let us also give the partition

function for the free boson with Neumann bound-

ary conditions:

ZN(q) =

∫ ⊕
dk
qk
2/2

η(q)
;

k labels the momentum of an open string vertex

operator.
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Boundary fields are additional operators whose

existence is made plausible by the fact that bulk

field correlators usually have singularities when

the fields approach the boundary, cf. (2.2). Bound-

ary fields ψk(x) falls into irreducible representa-

tions of the symmetry algebra Wop. Just like
chiral vertex operators, they have an operator

product expansion (x1 > x2)

ψk(x1)ψl(x2) = (2.5)∑
m

Cαklm (x1 − x2)hm−hk−hl ψm(x2)

and the coefficients are to be fixed in such a way

as to satisfy sewing relation. As an important

feature, let us stress that boundary fields in gen-

eral are confined to the boundary of the world-

sheet and cannot be moved into the interior. In

particular, there is no unique way to interchange

the two operators on the lhs of (2.5), thus the

coefficients depend on the ordering of the argu-

ments.

For free bosons as above, the ordinary OPE of

open string vertex operators is recovered. The

SU(2) with a ‘Cardy type’ boundary condition la-

belled by α contains SU(2)-multiplets associated

to primary boundary fields, namely ψJj (x) with

J = 0, 1, . . . ,min(2α, k− 2α) and j = −J, . . . , J .
In this case, and indeed for Cardy type boundary

conditions in any rational CFT, the coefficients

in the boundary OPE above are known: They

can be expressed in terms of the fusing matrix

from the theory of chiral blocks, see [10, 11, 12].

For the SU(2)-case, we have

Cα(I,i) (J,j) (K,k) =
[
I J K
i j k

]
{I J K
ααα
}q (2.6)

where th first symbol on the rhs is a Clebsch-

Gordan coefficient of the group SU(2), while the

second is a 6J symbol of the quantum group al-

gebra Uq(su(2)) with q = e
2πi
k+2 . For our purposes,

only the limit k → ∞ will be important. There,
the structure constants above approach those of

matrix multiplication in Mat(2α+ 1), see [2] for

details.

3. Flat branes in a B-field

Let us briefly recall the main features of how non-

commutative effects are uncovered in the simple

case of flat branes in RD which carry a B-field;

for more details, see e.g. [13, 14]. One can start

from a σ-model description where the ordinary

Polyakov action is supplemented by a boundary

term

SB ∼ F
∫
∂Σ

dx X1∂X2 .

For simplicity, we display only two target dimen-

sions with coordinates Xµ, µ = 1, 2. The con-

stant F is the strength of a (magnetic) B-field

along these directions. Upon variation, the σ-

model action in particular yields gluing condi-

tions along the boundary ∂Σ:

∂y ~X = −B ∂x ~X with B =

(
0 F

−F 0

)
. (3.1)

Of course, ordinary Neumann conditions are re-

covered when the B-field is switched off. For later

convenience, let us rewrite (3.1) in the form

∂ ~X = Θ̃ ∂̄ ~X with Θ̃ =
1−B
1 +B

. (3.2)

If one wants to compute the low-energy effective

action for branes in a B-field, the main ingre-

dients one needs from CFT are the spectrum of

open string vertex operators (boundary fields) al-

lowed by the boundary condition, and their inter-

actions. In the present case of an uncompactified

target, one finds that the boundary field content

is not influenced by the magnetic field, while the

boundary OPE does depend on it. This can be

seen e.g. by computing 〈X(x1)X(x2)〉 from the
gluing conditions (3.2). For primary vertex op-

erators V [~k] = exp{i~k · ~X}, this yields the OPE

ei
~k1· ~X(x1)ei

~k2· ~X(x2) = (3.3)

|x1 − x2|α′~kt1G~k2 eiπ~kt1Θ~k2ei(~k1+~k2)· ~X(x2) + . . .

where G and Θ are proportional to the symmet-

ric resp. anti-symmetric part of Θ̃. In the ex-

pansion (3.3), it is understood that vertex op-

erators are ordered such that x1 > x2: This is

crucial (for non-vanishing B-field) because of the

anti-symmetry of Θ. The massless effective fields

showing up in the effective action are the ‘pa-

rameters’ Aµ in Ψ = Aµ(k) : ∂X
µV [k] : . The

n th order (in Aµ) contribution to Seff is obtained
from the CFT n-point function of the boundary

field Ψ, after integrating out world-sheet moduli.

4
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In addition, it is essential to specify the regime

of parameters where the effective action is to be

evaluated: Taking α′ → 0 simply means that

we only look at massless open string excitations,

but for the following it is equally important to

scale the other parameters appropriately, as was

emphasised in [14]. This ‘Seiberg-Witten limit’

requires to keep the open string metric G and the

anti-commutativity parameter Θ fixed. Looking

at (3.3), we see that this implies that the V [~k]

OPE becomes topological in the sense that the

(x1 − x2)-dependence disappears, but the order-
ing of the vertex operators still affects the Θ-

dependent phase. In this specific limit one finds

that the low-energy effective action of flat branes

in a B-field is given by

Seff =
∫
R2

F ∗ F (3.4)

(up to higher order terms in Aµ) with

Fµν = ∂µAν − ∂νAµ + iAµ ∗Aν − iAν ∗Aµ .
This result was first obtained in [15]; the methods

used there are based on target space considera-

tions and do not easily generalise to other situ-

ations, but in particular they led to the insight

that the Moyal product(
f ∗ g )(x) = e−iπΘµν∂xµ∂yν f(x)g(y) ∣∣

x=y

enters the effective action. Seff is well known to
describe Maxwell theory on a non-commutative

plane, and therefore one can suggest in hind-

sight that the classical world-volume of our 2-

dimensional brane has undergone a deformation

quantisation through quantum effects in the pres-

ence of open strings and a B-field. If asked to give

the ‘world-sheet reason’ for non-commutativity,

we can point to the fact that the OPE of ver-

tex operators depends on their ordering even in

the simplifying limit considered above. In view

of what was said before about non-locality of

boundary fields, we expect that non-commuta-

tivity is virtually omnipresent in brane physics.

4. D-branes in SU(2)

As was mentioned before, our special interest in

branes in WZW models rests partially on the

fact that these conformal field theories have a

classical target space description, as σ-models on

group manifolds. Thus we can contrast classical

pictures to the results of an exact CFT analy-

sis, which fortunately can be worked out in great

detail for these theories.

Even though most of the following statements

have an immediate generalisation to other groups,

we will mainly stick to the caseG = SU(2), which

is not only distinguished by its simplicity, but

also because this group manifold occurs as com-

ponent of consistent superstring backgrounds like

AdS3 × S3 × T 4, AdS3 × S3 × S3 × S1 or R5,1 ×
R>0 × S3. In the latter example, which provides
the world-sheet description of Neveu-Schwarz 5-

branes [16], the middle factor refers to a linear

dilaton, i.e. a Liouville theory.

In order to construct conformal boundary con-

ditions in the WZW target space, it is by far

most convenient to start from the currents’ glu-

ing conditions of the world-sheet description and

then insert the relations

J(z) = −k (∂g)g−1 , J̄(z̄) = k g−1∂̄g

to the group-valued field g : Σ→ G.

Using this, it was shown in [17] – but see also

[18, 19] for subsequent work – that the standard

gluing conditions Ja(z) = Ja(z̄) correspond, in

the classical limit, to the constraint that g(∂Σ)

takes values in a conjugacy class of G.

For SU(2), we have two point-like conjugacy clas-

ses ±e (the central elements) and, the generic
case, two-spheres within S3 ' SU(2), symmetric
about the axis through e and −e and parame-
terised by an angle θ ∈ ]0, π[.
Obviously, this orientation within the target is

not preferred and one can indeed obtain the con-

dition that g(∂Σ) lies in a rotated conjugacy class

when one starts from the CFT gluing conditions

Ja(z) = AdhJ
a(z̄) for some group element h [19].

Within the CFT, such twists by inner automor-

phisms Ω = Ω(i) can also be realized as deforma-

tions by marginal boundary fields [20], in accor-

dance with the symmetries of the target space.

For more complicated groups, also outer automor-

phisms Ω = Ω(o) are available for insertion into

the gluing conditions; they lead to twisted con-

jugacy classes of a different form. E.g., in the

5
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SU(3) case, the generic twisted conjugacy class

has a classical world-volume of codimension 1,

instead of codimension 2 as for Ω =id.

All the boundary conditions mentioned so far are

maximally symmetric in the sense that the full

affine Lie algebra associated to G acts in the

boundary CFT. One should stress that already

in these cases, the classical world-volumes have

more structure than one would naively have ex-

pected from the simple “Neumann-like” appear-

ance of standard gluing conditions; in particular,

note that none of the above branes is “target-

filling”. From the CFT point of view, it is con-

ceivable that there are additional boundary con-

ditions which preserve only the Virasoro algebra.

To establish this and construct them is a difficult

task because the resulting models are no longer

rational. But if they exist, it should be a very

interesting problem to find a geometrical target

space interpretation for their world-volumes – in

case there is one.

Returning to the basic case of the standard glu-

ing conditions Ja(z) = Ja(z̄), the analysis that

uncovers the role of conjugacy classes also shows

that the generic branes carry a non-vanishing B-

field [17]. The gluing conditions can be cast into

the form

(g−1∂yg)|| =
Ad(g) + 1

Ad(g)− 1 (g
−1∂xg)||

where (·)|| denotes projection along the tangent
space of a conjugacy class. The interpretation of

the quotient on the rhs as B-field follows from the

usual correspondence between
√
kg−1∂g and the

flat space coordinate ∂X , cf. also eq. (3.1). The

associated 2-form B is a particular potential for

the NS 3-form field strength H = dB, within a

neighbourhood of the conjugacy class. Later, we

will mostly be concerned with the large level limit

of the SU(2) theory. In appropriate coordinates

the field strength decays with 1/k while the B-

field is level independent.

Let us add that a semi-classical extension of the

above analysis, e.g. using path integral meth-

ods [18], shows that the branes have to satisfy a

Dirac-type flux quantisation condition [17]. This

leaves only a finite number of SU(2) conjugacy

classes (for fixed gluing conditions), much in agree-

ment with the CFT analysis. The remaining

conjugacy classes are those where the angle θ

introduced above takes the values θn =
n
k π for

n = 0, . . . , k. A different explanation for the dis-

creteness of SU(2) branes was given in [21], where

the stability of spherical branes was investigated

with the help of the Born-Infeld action. It was

found that only branes at ’latitudes’ θn are stable

against radial fluctuations; see also [22].

5. Low-energy effective action

After this account of the classical picture of branes

in SU(2), let us now exploit the exact CFT de-

scription, the data of which were recalled in pass-

ing in section 2. Our aim is to calculate the

low-energy effective action of open strings at-

tached to such a brane. From this we can ex-

pect to gain new insight into the dynamics of

branes wrapped on an S2 ⊂ S3, but we can

also hope to ‘recognise’ the resulting action as

one naturally associated to a non-commutative

space, which we might then refer to as the ’quan-

tised’ brane world-volume as felt by open strings.

That deviations from the classical picture occur

is suggested by analogy to flat branes and recall-

ing that 2-branes in SU(2) carry a non-vanishing

B-field.

Similar to the Seiberg-Witten analysis, we will

concentrate on a certain regime of parameters,

namely the low-energy limit α′ → 0 for large level
k such that α′k → ∞, and with metric Gab and
structure constants fabc in the following OPE of

(rescaled) currents held fixed:

ja(x1) j
b(x2) =

α′

2

Gab

(x1 − x2)2 (5.1)

+
i α′ fabc
x1 − x2 j

c(x2) + . . .

The metric G is used in the following to raise

and lower indices a = 1, 2, 3. We concentrate on

branes given by Cardy type boundary conditions.

In the large k regime, there are vertex operators

V [ψIi ](x) present for I = 0, 1, . . . , 2α. To these,

we can associate effective fields A ∈Mat(2α+1)
via V [A] =

∑
aIiV [ψ

I
i ]. We will include stacks

of N identical branes from the start; this merely

requires to replace the field A from above by A ∈
Mat(N)⊗Mat(2α+ 1).
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The boundary fields : jaV [ψIi ] : (x) have string

masses given by

M2 =
1

α′
hI =

I(I + 1)

α′(k + 2)
(5.2)

and become massless in the limit we consider.

The combination Ψ =: jaV [Aa] : (with summa-

tion over a understood) is physical if LaAa = 0,

where the ‘angular momentum’ La acts by a ma-

trix commutator,

LaA = [Ya ∗, A ] (5.3)

with Ya = 1N ⊗ (1/
√
2α′)Y1a denoting (rescaled)

su(2)-generators in 2α+ 1 dimensions.

The mass squares above are eigenvalues of the

operator LaLa, and they induce a term quadratic

in LaAb into the low-energy effective action. To

obtain the higher order contributions, one has

to compute n-point functions of the boundary

field Ψ (and then to integrate out world-sheet

moduli), using the current OPE (5.1) as well as

the following basic OPE:

ja(x1)V [A](x2) =
α′Gab

x1 − x2 V [LbA](x2) + . . .

(5.4)

The last piece of CFT information needed is that

the OPE of lowest-dimension boundary fields V [ψIi ]

converges to a matrix product ∗ in the limit k→
∞; this accounts for the matrix traces showing
up later.

Details of the computation of the effective ac-

tion (up to including fourth order terms in Aa)

were given in [3], so we merely point out parallels

and differences to the case of flat branes here: In

the OPEs (5.1) and (5.4), the Gab- and La-terms

on the rhs are familiar from the abelian situa-

tion, while the possibility to contract two cur-

rents into a third one, accompanied by a struc-

ture constant, will produce new terms. Our effec-

tive action should, however, reduce to the one for

flat branes upon setting fabc = 0 and replacing La
by −i∂a.
The result found in [3] does indeed have this

property: It is suggestive to split the action

Seff = SYM + SCS (5.5)

into two pieces, with obvious nomenclature: Re-

garding Aa as a gauge field, we first define an

associated field strength by

Fab(A) = i LaAb − i LbAa + i [Aa ∗, Ab] + fabcAc ;
(5.6)

then we have the usual expression for the ‘Yang-

Mills part’

SYM = 1
4
tr
(
Fab ∗ Fab

)
. (5.7)

Similarly, a ‘Chern-Simons three-form’ is intro-

duced as

CSabc(A) = LaAb ∗ Ac (5.8)

+
1

3
Aa ∗ [Ab ∗, Ac]− i

2
fabd A

d ∗ Ac ,

and the second part of our effective action reads

SCS = − i
2
tr
(
fabc CSabc

)
(5.9)

Note that both (5.6) and (5.8) include terms pro-

portional to fabc which ‘correct’ the expressions

familiar from ordinary geometry.

We should remark that, as usual in string theory,

(5.5) follows from CFT only up to second order

terms in Aa that vanish on-shell, i.e. upon using

the physical state condition LaAa = 0. The main

motivation for this modification is that it renders

the action off-shell gauge invariant under

δΛ Aa = i LaΛ + i [Aa,Λ ]

for arbitrary Λ ∈ Mat(N) ⊗Mat(2α + 1). Note,
in particular, that the ’mass term’ in the Chern-

Simons form (5.8) is required by gauge invari-

ance. On the other hand, the effective action

(5.5) is the unique combination of SYM and SCS
in which mass terms cancel – thus allowing for

massless ‘translation’ modes.

In the case of flat branes in a B-field, the LEEA of

open strings (in the Seiberg-Witten limit) could

be recognised as a Maxwell theory on a deformed

world-volume. In the present case, we expect

quantisations of two-spheres to play a role, with

the so-called fuzzy spheres [23] as most natural

candidates. And indeed, the action SYM was al-
ready considered in the non-commutative geom-

etry literature [24, 25], where it was derived from

a Connes spectral triple and viewed as describing

electrodynamics on a fuzzy sphere. In [26], also

Chern-Simons-like actions on such spaces were

7
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used. But before we pursue these non-commut-

ative geometry ideas further, let us add some

remarks on effective actions for full superstring

theory backgrounds containing an SU(2) WZW-

model, and on what can be learnt from Seff about
the dynamics of SU(2)-branes.

For string theory, we should extend all our cal-

culations to the N = 1 supersymmetric variant

of the SU(2)-model. But it was explained in

[3] that the bosonic part of the supersymmet-

ric effective action is again given by Seff from eq.
(5.5), at least in the limit α′ → 0 and α′k →
∞. Moreover, it is this limiting regime and the
fact that we focus on genus zero world-sheets

which allows us to work in a space-time R7×S3;
else we would have to deal with non-compact

curved backgrounds like AdS3 or the linear dila-

ton which are part of the full superstring back-

grounds listed before. Boundary conditions for

such models are hard to construct, although sig-

nificant progress for the boundary Liouville model

has been reported on at this conference [27].

The action (5.5) can be viewed as a potential for

‘Higgs fields’ associated with internal degrees of

freedom of branes wrapped around (fuzzy) spheres.

The study of its equations of motion should pro-

vide interesting clues e.g. on stability and bound

states.

Owing to the (non-commutative) geometric na-

ture of SYM and SCS, the equations of motion
derived from Seff take the rather simple form

La Fab + [A
a ∗, Fab ] = 0 : (5.10)

The curvature of the solutions must be covari-

antly constant.

As indicated above, and as suggested by (classi-

cal) target symmetry, rigid rotations of the initial

stack of N branes of type α correspond to solu-

tions of (5.10), more precisely to ‘constant’ solu-

tions – ones with LaAb = 0 for all a, b – which

moreover satisfy [Aa ∗, Ab ] = 0. These are famil-
iar from the flat case [28]

On ‘constant’ gauge configurations, eqs. (5.10)

simplify to[
Aa ∗, [Aa ∗, Ab ] − i fabc A

c
]
= 0 , (5.11)

from which another class of solutions become ob-

vious: constant gauge fields which moreover sat-

isfy

[Aa,Ab ] = i f cab Ac (5.12)

i.e. which form generators of a (not necessarily

irreducible) representation of su(2) by matrices

in Mat(N) ⊗ 12α+1 (the requirement LaAb = 0
fixes the second tensor factor of Aa to be trivial).

Putting fabc = 0, these coincide with the rigid

rotations, but they have quite different effects in

the non-abelian case, as we will point out shortly.

Written in terms of new variables Ba := Ya +

Aa, cf. eq. (5.3), the unrestricted equations (5.10)

acquire the same form[
Ba ∗, [Ba ∗, Bb ] − i fabc B

c
]
= 0 (5.13)

as those in (5.11). This means that any su(2)-re-

presentation Ba ∈Mat(N)⊗Mat(2α+ 1) solves
the equations of motion.

According to standard string theory reasoning,

each stationary point Aa of Seff should corre-
spond to a zero of the β-function that describes

perturbations by our world-sheet field Ψ. At such

a fixed point of the associated RG-flow, confor-

mal invariance is restored and, in particular, a

conformal boundary condition is reached. The

new boundary condition, resp. the brane system

corresponding to it, can be characterised with

the help of world-sheet methods: For the sim-

ple constant commuting case from above, this is

straightforward since Ψ is a marginal boundary

operator, so one can use the results of [20]. All

the other solutions to the equations of motion

belong to RG flows induced by perturbations

Spert =

∫
dx :jaV [Aa] : (x)

with non-marginal (or ‘marginally relevant’) fields

which destroy conformal invariance.

In order to pin down the boundary conditions

at the RG fixed points corresponding to su(2)-

representations, one can first make an educated

guess resting on symmetry considerations, and

then test this conjecture with techniques from

conformal perturbation theory, see [3] and [4].

The observations on the (world-sheet) symmetry

of the new boundary conditions are most eas-

ily understood in the case of constant solutions

(5.12), where the perturbing field is given by the

product of a boundary current ja with a constant

8
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SU(2) boundary spin Aa. Because of (5.12), the

operators ad(Aa) furnish an su(2)-representation

on Mat(N). Turning on the perturbation jaAa
breaks the individual su(2) resp. ŜU(2)k symme-

try generated by ad(Aa) resp. j
a, but from expe-

rience with similar couplings of spin and orbital

angular momentum in quantum mechanics, one

may suspect that the sum ja+ad(Aa) has a good

chance to be realized as a symmetry in the per-

turbed theory. The relations of ja + ad(Aa) are

indeed those of an ŜU(2)k current algebra, acting

on Mat(N)⊗Hα, whereHα is the state space of a
single brane with label α. If we assume that this

action survives the perturbation, we may con-

clude that the new brane configuration is built

up from Cardy branes (here the rationality of

the WZW model is important). A little more

thought and guesswork leads to the conjecture

that the fixed point corresponding to a solution

of (5.10) of the type [Ba,Bb ] = if cab Bc is deter-

mined by the representation content of the matri-

ces Ba ∈Mat(N)⊗Mat(2α+1); we have passed
to non-constant solutions here since the pattern

is no more difficult to describe for them:

Denote by (ni)i=1,...,r the partition n1+. . .+nr =

(2α+ 1)N where the ni are dimensions of su(2)-

irreducibles contained in the representation given

by Ba. Then, under the perturbation by j
aAa,

the stack of N branes of type α evolves into a

system that contains Nβ Cardy branes of type

β, where Nβ = #{ni |ni = 2β + 1}.
It is, in fact, not too difficult to give quantitative

support for this conjecture, by computing the so-

called g-factor or boundary entropy [29] which is

simply the 1-point function of the identity oper-

ator. For a single brane of type α in the SU(2)

WZW model, it is given by [8]

gα =
Sα 0√
S0 0

=

(
2

k+ 2

) 1
4 sin (2α+1)πk+2

sin
1
2 π
k+2

,

and it behaves additively under forming superpo-

sitions (systems) of branes. But this means that

the set of all g-factors for superpositions of Cardy

branes in SU(2) form a lattice – and any mem-

ber can be identified by computing the first few

terms of a perturbative expansion (here: in 1/k)

of g at the new fixed point, in complete analogy

to the discussion of boundary perturbations in

Virasoro minimal models [4]. But computing the

logarithm of the ‘vacuum functional’ g in such

an expansion is nothing but computing low-order

contributions to the effective action, the result of

which was presented already above. And indeed

one finds that

Seff(Aa) = log gA

gN ·α
,

where gN ·α = Ngα denotes the boundary en-

tropy of the original N branes of type α, while

gA denotes that of the end-configuration corre-

sponding to the solution Aa, according to the rule

stated above.

As a special case of such an RG flow, considerN

branes of type α = 0 and let Aa ∈ Mat(N) gen-
erate the irreducible su(2)-representation in the

N -dimensional Chan-Paton space. Then the rule

implies that the system flows to a single brane of

type β = N−1
2 . Comparison of the actions evalu-

ated at both configurations shows that energy is

released during that flow, i.e. that in the SU(2)

WZW models, we can indeed regard (‘spherical’)

Cardy branes of type α > 0 as bound states of

2α+ 1 zero-branes.

It would be interesting to see whether similar

statements hold in other examples of CFT string

compactifications. It should be possible to treat

e.g. Gepner models by the same methods. At

least for B-type branes, this could lead to quan-

tisations of supersymmetric cycles (here of holo-

morphic submanifolds of the Calabi-Yau mani-

fold in question). In contrast, one does not ex-

pect that the world-volume of an A-type brane

is deformed by open string effects, at least if

one relies on the large-volume limit and the flat

case as guidelines. Then, it follows from the A-

type supersymmetric cycle conditions that the

brane carries no B-field. Note that this might

imply that ordinary submanifolds can be mirrors

of quantised ones.

6. Towards spectral data for branes

The SU(2) example shows that we can derive

brane effective actions, and sometimes interest-

ing dynamical effects encoded in them, purely

from boundary CFT without ever invoking geo-

9
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metrical concepts, be they classical or non-com-

mutative. From this point of view, it comes as no

surprise that actions describing field theories ‘on

a brane world-volume’ are sometimes (or rather:

usually) not of a type known from classical dif-

ferential geometry. The remarkable fact is rather

that, at least in the examples studied so far,

these actions can still be connected with natural

functionals on non-commutative spaces, which

one may in hindsight identify with brane world-

volumes. This fact makes it tempting to leave

the secure path of world-sheet computations and

replace (or at least supplement) it by geometrical

target space considerations, although now in the

much wider sense of Connes’ non-commutative

geometry.

What we have in mind is a reformulation of the

‘recipe’ commonly used in string theory when

one is to derive low-energy effective actions: In-

stead of going through the sometimes extremely

tedious CFT calculations step by step, it is often

enough to appeal to certain ‘principles’ – con-

cerning (super)symmetries, e.g. – to be able to

simply write down the action in question. These

principles in particular include the conviction that

low-energy effective actions induced by string the-

ory are of a geometrical nature. It is hard to see

how the validity of such a principle could be de-

rived in any generality from, say, the CFT formu-

lation of perturbative strings, and the existence

of ‘non-commutative actions’ for certain branes

shows that the classical setting is definitely too

narrow. But since this ‘principle of being geo-

metric’ has proven so useful, one should try to

widen it appropriately so as to include the geom-

etry of quantised spaces.

The main difficulties are encountered with the

zeroth step – the one not to worry about in the

classical situation: There, it is more or less ev-

ident which target space one is talking about,

and all the work consists in finding appropriate

actions on it. The lesson to be learnt from branes

is not to presuppose too much about the nature

of the brane world-volume itself, but rather to

carefully uncover it from an ‘unbiased’ but unge-

ometric description of the brane as provided by

boundary CFT.

Already in order to state the problem more pre-

cisely, we need to recall how spaces are presented

in non-commutative geometry. Instead of local

charts, one uses so-called spectral data including

an algebra A, a (generalised) ‘Dirac operator’ D
and a Hilbert space H on which A and D act.
The actions must meet various conditions, in par-

ticular ones concerning boundedness properties.

Here, we restrict ourselves to a very crude list of

ingredients and refer to Connes’ book [30] or also

to [5] for the details.

The idea to use data (A,H, D) to formulate ge-
ometry is of course inspired by quantum mechan-

ics: An electron moving on a (spin) manifold

M ‘sees’ an algebra A = C(M) or C∞(M) of
functions on M generated by position operators,

along with a space of states H = L2(S) – square-
integrable sections of the spinor bundle – and

the Dirac operator. Roughly speaking, the al-

gebra A encodes the topology of the space un-
der consideration (in the commutative case, this

is just Gelfands theorem), while the choice of a

‘K-cycle’ (H, D) fixes the geometry. That this
can be made to work quantitatively is of course

a matter of proving mathematical theorems [30].

In the process, one has to give algebraic reformu-

lations (and generalisations) of all the basic no-

tions from classical geometry, including in par-

ticular differential forms: Given (A,H, D), the
space of 1-forms is defined as

Ω1D(A) =
{ ∑

i,jπ(ai) [D,π(aj) ]
∣∣∣ ai, aj ∈ A }

(6.1)

where π is the representation of A on H. In par-
ticular, forms are linear operators on the Hilbert

space, and the definition works irrespective of

whether the elements of A commute with each
other or not. We refrain from repeating the def-

inition of higher forms since this involves some

technical subtleties, see [30, 5]; for the present

purposes, it is sufficient to know the differential

of a 1-form A as given explicitly in (6.1):

dA =
∑
i,j

[D,π(aj) ] [D,π(aj) ] .

Suppose the non-commutative space is addition-

ally equipped with an ‘integral over differential

forms’, i.e. a linear map
∫− : Ω•D(A) −→ C

with the cyclicity property
∫− η ω =

∫− ω η. Then

we can already formulate an action for ‘electro-

dynamics’ on this non-commutative space: Re-

10



Non-perturbative Quantum Effects 2000 Andreas Recknagel

gard A as a 1-form gauge potential and define

the corresponding field strength 2-form by F =

dA+AA. Then

SMaxw =
∫
− F 2

is invariant under the gauge transformationsA 7→
uAu∗ + udu∗ for any unitary u ∈ A, as can be
seen with the help of the (graded) Leibniz rule for

d and cyclicity of the integral. Of course, SMaxw
is but the simplest example of a ‘geometric’ ac-

tion that can be associated with a spectral triple.

Using algebraic generalisations of other standard

tools of geometry (e.g. of vector bundles, which

appear as projective A-modules), one can write
down more complicated functionals, but as in

classical geometry one expects that a few pre-

ferred actions remain when exploiting naturality

and symmetry principles.

Before we try to link up the general non-commut-

ative geometry framework to branes, let us add

some remarks on possible variants. First of all,

it should be said that the algebraic reformula-

tion of notions from classical geometry is typi-

cally not unique. Any such reformulation must

meet the requirement that ordinary geometry is

reproduced in the commutative case, but often

there are different generalisations which happen

to coincide when A is commutative. Choices be-
tween different definitions can be made on the

grounds of mathematical power, or of physical

intuition. Secondly, and of more practical conse-

quences for applications in string theory, one can

work with variations of Connes’ spectral triple.

Let us again try to motivate this by looking at a

quantum mechanical particle moving on a man-

ifold. When dealing with a spin-less boson, nei-

ther spinor bundle nor Dirac operator are avail-

able, but one can still extract geometrical in-

formation on the space from the spectral data

(A,H,�) where H = L2(Λ•M) and where �
denotes the Laplace operator [6]. On the other

hand, if positronium moves on a manifold, two

operators are available (two Dirac operators or,

alternatively, the differential and its adjoint) from

which it is in fact easier to reconstruct differen-

tial geometry than from a single Dirac operator.

This is explained in great detail in [5, 31], where

it was also shown how classes of classical geome-

tries (e.g. Riemann, Kähler, Hyperkähler) corre-

spond to a hierarchy of algebraic relations among

a set of generalised Dirac operators, which can

also be seen as a hierarchy of supersymmetries

acting on these spectral data.

Now let us try to devise a procedure by which we

assign a set of spectral data to a brane given by

a conformal boundary condition. The recipe to

be given remains tentative, should be tested in

more examples and may need revision in certain

places. It is motivated by the calculations that

lead to non-commutative effective actions as re-

viewed above, and equally strongly by the ideas

in the work [6] by Fröhlich and Gawȩdzki, who

were the first to try and extract (in the closed

string case) non-commutative spaces from CFT.

The main piece of data we have to recover is the

algebra A of ‘functions’ on the world-volume of
the brane. In the two examples studied above,

these ‘functions’ contain the effective fields ap-

pearing in the effective brane action. These are

in turn obtained from the open string vertex op-

erators which are supported by the boundary

condition in question, and multiplication of ef-

fective fields is inherited from the OPE of the

corresponding boundary fields. However, only

a subset of all boundary fields appeared in the

Maxwell actions on the non-commutative plane

or on a fuzzy sphere. This was due to the fact

that we considered only a specific regime of pa-

rameter space, including the limit α′ → 0, so

that all higher excitations (non-lowest dimension

fields) become infinitely massive and disappear.

Accordingly, the following proposal for the defini-

tion of the world-volume algebra Aα of a brane α
begins by choosing a subspace V of all boundary
fields (or, equivalently, of the state space Hα of
the boundary CFT). Typically, V will precisely
contain the ‘survivors’ of a Seiberg-Witten-like

limit. This limit is then also to be applied to

all structure constants in the theory. To each

ψi ∈ V , we associated a (linear) generator ψ̂i of
Aα. Multiplication is defined via the OPE:

ψ̂i ∗ ψ̂j := πV
(
ψi(1)ψj(0)

)̂ (6.2)

where πV denotes orthogonal projection along V
of the operators appearing in the expansion on

the rhs, and is again meant to include performing
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the limits involved also for the OPE structure

constants.

Insertion points 1 and 0 in (6.2) are chosen to re-

move world-sheet coordinates from the rhs. In

the two examples encountered above, such an

arbitrary choice is not necessary since the SW-

limits taken there, together with the truncations

to V , remove all the coordinate dependence from
πV
(
ψi(x1)ψj(x2)

)
– simply because the limits im-

ply that the conformal dimensions (scaled appro-

priately with α′) of the open string vertex oper-
ators in V vanish.
Assume that the limiting regime under consider-

ation is such that the whole boundary CFT be-

comes topological in the sense that the correla-

tion functions are coordinate independent. Then

it is rather easy to prove associativity of the prod-

uct defined by the OPE: The coefficients in the

multiplication table can be visualised by disk dia-

grams with three insertion of boundary fields, as-

sociativity requires to look at 4-point functions.

But as long as fields can be moved close to one

another or further apart without changing the

value of the diagram, associativity of ∗ follows di-
rectly from deforming the insertion points. The

same reasoning would of course apply to topolog-

ical closed strings, replacing disks with spheres

and open with closed string vertex operators. In

this case, however, one can even move the corre-

sponding bulk fields around each other, so that,

on a topological level, no non-commutative ef-

fects should appear for closed strings. This is

to be contrasted to the open string case, where

even from the crude point of view of world-sheet

topology there is no reason to expect that a di-

agram 〈ψiψjψk 〉 equals 〈ψjψiψk 〉: The mutual
non-locality of boundary operators may survive

even in a ‘topological’ limit, as is the case for

flat branes in a B-field or for the k→∞ limit of
SU(2) branes.

Clearly, not every limiting/projection scheme V
yields an associative product ∗. SU(2) provides
interesting examples where one can trace back vi-

olations of associativity to non-vanishing of the 3-

form field strengthH , see [2]. In all cases encoun-

tered so far, any non-associativity introduced by

the projection/limiting procedure amounts to a

relatively mild form of quasi-associativity, be-

cause of the properties of the CFT and its Moore-

Seiberg category. One should note that there is a

slightly different definition of a world-volume al-

gebra that avoids non-associativity from the start

[6]: One first chooses a Hilbert space H, then de-
fines the algebra in terms of matrix elements of

linear operators acting in H. In principle, how-
ever, non-associativity might be of similar sig-

nificance as non-commutativity, even though it

is hard to fit into existing frameworks of non-

commutative geometry.

But let us return to our concrete examples and

see which world-volume algebras arise from ap-

plying the general recipe there; all the necessary

CFT data were provided before. For a flat brane

in a constant B-field, considered in the Seiberg-

Witten limit, the world-volume generators are

the U(1)2 primaries exp{i~k · ~X}; all descendants
are discarded since they become infinitely much

heavier as α′ → 0. In this limit, the OPE of two
such fields becomes

ei
~k1· ~X(x1)ei

~k2· ~X(x2) = eiπ
~kt1Θ

~k2ei(
~k1+~k2)· ~X(x2)

after projecting out descendants. It is insertion

point independent and coincides with the for-

mula for the Moyal product of exponentials. We

thus arrive at the (associative) algebra of a de-

formed plane, without detour through an effec-

tive action.

For the SU(2) WZW model, we chose to con-

sider branes in the combined limit α′ → 0 and
α′k→∞. Then, only the SU(2)-primaries along
with their ja0 -descendants retain finite string the-

ory mass and provide (2α+1)2 linear generators

ψIi of the world-volume algebra, where again α

is the label of the Cardy brane. We have men-

tioned before that the (truncated) OPE of ψIi
becomes xi-independent in the limit, and that

the structure constants become those of ordinary

matrix multiplication. More precisely, one can

view Mat(2α + 1) as a module of su(2), acting

by commutators with the generators in 2α + 1

dimensions, and decompose it into irreducibles,

Mat(2α+ 1) 'su(2)
⊕

J=0,1,...,2α

V J . (6.3)

One first notes that the same su(2) multiplets

as in the (lowest energy subspaces of) Hα show
up. Next, one can compare the (limit of the)
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boundary OPE structure constants for the ψIi
with the multiplication that is induced on the

rhs of (6.3) by means of the isomorphism to the

algebra on the lhs [32]. One finds that both mul-

tiplication tables agree. On the other, this iso-

morphism is nothing but an elegant way to define

an associative truncation of the algebra of func-

tions on a two-sphere, yielding a fuzzy sphere.

Again, we arrive at the non-commutative space

that fits with the effective action computed inde-

pendently.

Having found an algebra of ‘functions on the brane

world-volume’, one should still pick a K-cycle

(H, D) to determine the geometrical structure
of the (non-commutative) space under consider-

ation. Proposals how to obtain these data from

a CFT were made in [6] for the closed string

case: As a Hilbert space, one simply takes a suit-

able subspace of the CFT state space – e.g. in

the supersymmetric situation, the zero momen-

tum Ramond states are a natural choice. Can-

didates for non-commutative generalisations of

Laplace or Dirac operators are provided by gen-

erators of the (super) Virasoro algebra: One puts

� = L0 − c/24 or D = G0, restricted to the

Hilbert space H chosen.
One should now ‘test’ these proposals in the open

string context, i.e. derive differential forms and

‘geometric’ actions for such spectral data and

compare them to the effective actions computed

with world-sheet methods. For the case of flat

branes, there is little doubt that the effective ac-

tion (5.5) will be recovered, since L0− c/24 resp.
G0 simply coincide with the Laplacian resp. the

Dirac operator on the (classical) world-volume,

all the non-commutativity being contained in the

∗-product (see e.g. [5, 31] for details). To derive
the effective action (5.5) for SU(2) branes from

spectral data recovered from string theory would

provide a more severe test – which is left for fu-

ture work.
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