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Abstract: The structure of a new family of factorised S-matrix theories with resonance poles is

reviewed. They are conjectured to correspond to the Homogeneous sine-Gordon theories associated

with simply laced compact Lie groups. Two of their more remarkable properties are, first, that some

of the resonance poles can be traced to the presence of unstable particles in the spectrum, and, second,

that they involve several independent mass scales. The conjectured relationship with the simply laced

HSG theories has been checked by means of the Thermodynamic Bethe ansatz (TBA) and, more

recently, through the explicit calculation of the Form Factors. The main results of the TBA analysis

are summarized.

The construction of solvable models that cap-

ture realistic properties of quantum particles is

one of the classical motivations for the study of

two-dimensional integrable quantum field theo-

ries. However, despite the fact that almost all

known particles are unstable [1], the vast ma-

jority of the integrable models considered so far

lack the feature of including unstable particles.

The aim of this talk is to present a new family

of factorised S-matrix theories [2] conjectured to

provide the exact solution for the Homogeneous

sine-Gordon models (HSG) [3, 4] corresponding

to simply-laced Lie groups. The semi-classical

spectrum of these models consists of a finite num-

ber of solitonic particles attached to the positive

roots of a Lie algebra, but only those associated

with the simple roots turn out to correspond to

stable particles in the quantum theory.

Although it is very difficult to distinguish

physically between an unstable particle of long

lifetime and a stable particle (e.g., the proton),

axiomatic S-matrix theory makes a big distinc-
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tion between them. The reason is that it is based

on asymptotic states that exist for arbitrarily

long time and, hence, can only contain stable

particles. In contrast, the basic property of a

long-lived unstable particle, and the one by means

of which it is usually observed, it that it corre-

sponds to a ‘resonance’ in interactions among the

stable particles. Therefore, if two stable particles

scatter at centre-of-mass energy
√
s close to the

mass of an unstable state with appropriate quan-

tum numbers, the corresponding S-matrix am-

plitude is expected to exhibit a complex pole at

sR = (M − iΓ/2)2 in the second Riemann sheet.
The position of the pole is given by the mass,

M , and decay width, Γ, of the resonance, whose

inverse is the lifetime of the unstable particle:

τ = h̄/Γ. If the lifetime is long or, equivalently,

if Γ � M , the form of the pole is given by the

Breit-Wigner resonance formula [5]:

S ' 1− i 2MΓ

s−M2 + iMΓ
. (1)

In a generic theory, unstable particles can also in-

duce other singularities like complex thresholds

and cuts. The simplest would correspond to the
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production of the unstable particle together with

one stable particle. However, since the unstable

particle decays, this kind of process would lead to

particle production and, hence, it has to be ab-

sent if the theory is integrable. Therefore, we will

assume that resonance poles are the only trace of

unstable particles in an integrable quantum field

theory.

There is a different HSG theory for each choice

of a compact simple Lie group G (with Lie al-

gebra g) and a positive integer k. It describes

an integrable massive perturbation of the con-

formal field theory (CFT) associated with the

coset Gk/U(1)
×rg , where rg = rankG, or, equiv-

alently, of the theory G-parafermions at level-

k [4]. When G is simply laced, the central charge

of the CFT and the conformal dimension of the

perturbation are given by

cCFT =
k dimG

k + hg
− rg = k − 1

k + hg
hgrg ,

∆ = ∆ =
hg

k + hg
< 1 , (2)

where hg is the Coxeter number of G. The defin-

ing action of the HSG models is

SHSG =
1

β2

{
SGWZW[h]

+
m2

π

∫
d2x 〈Λ+, h†Λ−h〉

}
, (3)

whose equations of motion are non-abelian affine

Toda equations [3]. In SHSG, h = h(t, x) is a

bosonic field taking values in G and SGWZW[h]

is the gauged Wess-Zumino-Witten action corre-

sponding to the coset Gk/U(1)
×rg . The parame-

tersm and β2 = 1/k+O(1/k2) are the bare mass

scale and the coupling constant, whose quantiza-

tion is required in order to make sense of the

WZW term. Λ+ and Λ− = i~λ± · ~H, are two arbi-
trary constant elements in the fundamental Weyl

chamber of the Cartan subalgebra of g associ-

ated with the maximal torus U(1)×rg . The HSG
theories are quantum integrable for any choice

of G and for any value of Λ± [4], which, in the
quantum theory, imply the existence of 2rg − 1
different mass scales. The HSG theories are not

parity invariant unless Λ+ and Λ− are chosen to
be parallel.

The semiclassical spectrum of the Gk–HSG

theory consists of towers of k − 1 soliton parti-
cles attached to each positive root ~α of g with

masses [6]

M~α[n] =
k

π
m~α sin

(πn
k

)
, n = 1, . . . , k−1. (4)

For a fixed root ~α, this spectrum is identical to

that one of the minimal Ak−1 S-matrix theory,
which corresponds to the SU(2)k–HSG model.

However, the overall mass scale

m~α = 2m

√
(~α · ~λ+)(~α · ~λ−) (5)

is different for each tower of particles. Consider

now the unique decomposition of a positive root

as a linear combination of simple roots: ~α =∑rg
i=1 pi ~αi. Then, eq. (4) satisfies

M~α[n] ≥
rg∑
i=1

M~αi(npi) , (6)

which indicates that the soliton particle (~α, n)

is unstable and decays into particles associated

with the simple roots [2]. Moreover, for any three

roots ~α, ~β, and ~α+~β of g, it can be easily checked

that

m2
~α+~β
= m2~α +m

2
~β
+ 2m~αm~β coshσ~α,~β , (7)

where

σ~α,~β =
1

2
ln
(~α · ~λ+)(~β · ~λ−)
(~α · ~λ−)(~β · ~λ+)

. (8)

These equations, together with (5), establish the

relationship between the arbitrary constants ~λ±
and the different scales that determine the semi-

classical mass spectrum of stable and unstable

particles.

In [2], it was conjectured that the exact so-

lution of the simply laced HSG theories is pro-

vided by a diagonal S-matrix. In this solution,

the exact spectrum of stable particles coincides

with the semi-classical spectrum of soliton parti-

cles of the HSG theory associated with the sim-

ple roots of the algebra, and there is an indepen-

dent mass scale attached to each simple root or,

equivalently, to each node of the Dynkin diagram

of g: m1, . . . ,mrg . Following [7], particles will

be labelled by two quantum numbers (a, i), with
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1 ≤ a ≤ k − 1 and 1 ≤ i ≤ rg, and S
ij
ab(θ) will

be the two-particle scattering amplitude corre-

sponding to the process where the particle (a, i)

initially is on the left-hand-side of the particle

(b, j). For particles associated to the same sim-

ple root, i = j, the amplitude is provided by the

minimal S-matrix associated to Ak−1

Siiab(θ) = S
Ak−1
ab (θ) = (a+ b)θ (|a− b|)θ

×
min(a,b)−1∏
n=1

(a+ b− 2n)2θ , (9)

where we have introduced the block notation (x)θ =

sinh 12 (θ + iπx
k
)/ sinh 12 (θ − iπx

k
). On the other

hand, the scattering between solitons associated

to different simple roots is described by

Sijab(θ) = (ηi,j)
ab

min(a,b)−1∏
n=0

(−|a−b|−1−2n)θ+σij ,

6= Sjiba(θ) (10)

if ~αi + ~αj is a root of g, and by S
ij
ab(θ) = 1 oth-

erwise. In this equation σij = −σji (σii = 0) are
rg − 1 free real parameters attached to the links
of the Dynkin diagram of g. They determine

the position of the resonance poles or, equiva-

lently, the mass scales of the spectrum of unsta-

ble particles. In particular, Sijaa(θ) has a reso-

nance pole at θ = σji − iπ/k which, for σji > 0,
should correspond to the unstable soliton particle

with massM~αi+~αj [a] in the semiclassical k � hg
limit. The existence of the 2rg − 1 free parame-
ters mi and σij is a consequence of the freedom

to choose Λ± in the classical action (3). Finally,
ηi,j = η∗j,i for i 6= j (ηii = 1) are arbitrary k-

th roots of −1 whose presence is required to sat-
isfy both the crossing relations and the bootstrap

equations [2].

Eqs. (9) and (10) admit the following integral

representation [7]

Sijab(θ) =

√
η
−2k C−1

ab

i,j exp

∫
dt

t
e−it(θ+σij)

×
(
2 cosh

πt

k
− I(g)

)
ij

(
2 cosh

πt

k
− I
)−1
ab

,

(11)

where C = 2−I and C(g) = 2−I(g) are the Cartan
matrices of Ak−1 and g, respectively. The scat-
tering matrices of the simply laced HSG theories

have been recently generalized in a Lie algebraic

sense in [8], where a new factorised S-matrix the-

ory is associated to each pair (g̃|g) of simply laced
Lie algebras. In this construction, the Gk–HSG

S-matrix corresponds to the pair (Ak−1|g).
So far, the relationship between the proposed

S-matrices and the simply laced HSG theories

has been checked by means of the Thermody-

namic Bethe ansatz (TBA) [7] and, more recently,

through the explicit calculation of the Form Fac-

tors [9]. Assuming that all particles are of fermionic

type (Siiaa(0) = −1), the TBA equations read

εia(θ) +
∑
b,j

Φijab ∗ Ljb(θ) = RM i
a cosh θ , (12)

where M i
a = mi sinh(πa/k) and L

j
b(θ) = ln

(
1 +

exp−εjb(θ)
)
. Recall that the scattering ampli-

tudes given by eqs. (9)–(11) are not parity sym-

metric. Actually, it is easy to check that they sat-

isfy the Hermitian analyticity condition Sijab(θ) =[
Sjiba(−θ∗)

]∗ 6= Sijab(θ) which, for real values of

the rapidity, implies that

Φijab(θ) = −i
d

dθ
lnSijab(θ) = Φ

ji
ba(−θ) 6= Φijab(−θ)

(13)

and, hence, εia(θ) 6= εia(−θ). Consequently, the
finite size scaling function is given by

c(R) =
3R

π2

∑
a,i

M i
a

∫ ∞
0

dθ cosh θ
(
Lia(θ)+L

i
a(−θ)

)
.

(14)

An important quantity that is provided by

the TBA analysis is the value of c(R) in the

R→ 0 limit, which corresponds to the the central
charge of the CFT that governs the ultra-violet

(UV) limit of the S-matrix theory, assuming that

it is unitary. Taking into account that the ker-

nels Φijab(θ − σij) are strongly peaked at θ = 0,
one can prove that its value is given by [7]

lim
R→0

c(R) =
6

π2

∑
a,i

L(f ia) (15)

where L(x) is Roger’s dilogarithm function, and
f ia =

(
1 + exp εia(0)

)−1
, for a = 1, . . . , k − 1, and

i = 1, . . . , rg, satisfy the constant TBA equations

k−1∑
b=1

Cab ln f ib =
rg∑
j=1

C(g)ij ln(1− f ja) . (16)
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These equations were considered before in the

context of the ‘restricted solid-on-solid’ models [10]

and solved in terms of Weyl characters, with the

result that the value of c(R) for R → 0 indeed
coincides with the central charge of the CFT as-

sociated with the coset Gk/U(1)
rg for any G and

k, which is given in eq. (2).

All this confirms that the S-matrices defined

by eqs. (9)–(11) describe massive integrable per-

turbations of the theory G-parafermions at level-

k for any (finite) value of the 2 rg−1 free param-
eters (mi, σjl), which strongly supports the con-

jectured connection with the HSG models. Addi-

tional support is provided by the recent applica-

tion of the Form Factor program to the SU(3)2–

HSG theory in [9], which allows the authors to

calculate not only the value of the UV central

charge (6/5) using the Zamolodchikov’s c-theorem,

but also the conformal dimension of various op-

erators including the dimension of the perturbing

operator (3/5).

Nevertheless, this is not the only informa-

tion that can be obtained from the TBA analy-

sis. For finite values of R, the finite size scaling

function c(R) shows a rather characteristic ‘stair-

case pattern’ where the number of steps is finite

and their position is fixed by the value of the

different free parameters entering the definition

of the S-matrix. This suggests the interpreta-

tion of the staircase pattern as a consequence

of the change in the number of effective light

degrees of freedom produced by the decoupling

of the heavy particles, both stable and unstable,

compared to the the scale given by the tempera-

ture T ' 1/R. This provides a strong argument
in favour of the interpretation of the resonance

poles as a trace of the presence of unstable par-

ticles in the spectrum, in agreement again with

the expected properties of the HSG models. It

is worth noticing that the original staircase mod-

els [11] do not allow such a direct physical inter-

pretation for the observed staircase pattern.

Although c(R) has to be calculated numeri-

cally, it is possible to understand analytically the

physical origin of the staircase behaviour. It will

be convenient to separate the TBA kernel in two

different parts:

Φijab(θ) =

{
φab(θ) ; i = j,

I(g)ij ψab(θ + σij) ; i 6= j,
(17)

where, according to (9), φab(θ) = φ
Ak−1
ab (θ) is just

the TBA kernel of the minimal S-matrix associ-

ated to Ak−1. Then, the TBA equations (12)
become

εia(θ)+

k−1∑
b=1

[
φab∗Lib(θ)+

∑
j 6=i
I(g)ij ψab∗Ljb(θ+σij)

]
= RM i

a cosh θ , (18)

which shows that whenever the term involving

the kernel ψab is negligible we are left with the

TBA equation for the minimal Ak−1 S-matrix
theory: Lia(θ) ' Lmina (θ). Moreover, standard

arguments show that Lia(θ) ' 0 if mi � 2/R
due to the dominance of the energy term, which

allows one to show that the effect of ψab is neg-

ligible for

|σij | � − ln(R2mimj/4) . (19)

Recall that Sijab(θ) exhibits complex poles whose

position is of the form θ = σji − iπn/k, where n
is some positive integer. For σji � 0 and n� k,

corresponding to Γ�M in (1), they are conjec-

tured to indicate the presence of unstable parti-

cles whose mass scale is given by

m2Rij = m2i +m
2
j + 2mimj cosh |σij |

' mimje
|σij | . (20)

Thus, the condition to neglect the term involving

ψab in (18) is justmRij � 2/R which means that
the unstable particles related to |σij | are heavy
and, hence, they are decoupled from the effec-

tive theory at the scale fixed by R. Notice that

the previously mentioned result that Lia(θ) ' 0
if mi � 2/R admits a similar interpretation by
changing unstable particles by stable ones. Tak-

ing into account all this, together with eq. (15),

we can sketch the following conjecture about the

staircase behaviour of the scaling function:

1) c(R) ' 0 if

2
R
� mi1 , . . . ,mirg ,mRij (deep IR)
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2) c(R) ' n 2(k−1)
k+2 if

mi1 , . . . ,min ≤ 2
R � min+1 , . . . ,mirg ,mRij ,

for n = 1, . . . , rg,

3) c(R) ' k−1
k+hg

hgrg if

mi1 , . . . ,mirg ,mRij � 2
R
(deep UV),

and always for all i 6= j.

Nevertheless, notice that these qualitative argu-

ments do not explain the behaviour of c(R) in

the wole range 0 ≤ R < ∞ and, hence, do not
allow one to predict the precise number of steps.

In [7], the scaling function c(R) was numeri-

cally calculated for the SU(3)k–HSGmodels with

k = 2, 3, 4 and the results are in agreement with

our conjecture. Since rg = 2, there are only three

free parameters: m1, m2, and σ21 = −σ12 ≡ σ,

which means that there is only one mass scale

for the unstable particles. The maximum num-

ber of steps turns out to be three in this case,

which corresponds to the situation when m1 �
m2 � mR12 . In contrast, if m1 ' m2 and σ ' 0
there are no steps at all. A remarkable result is

that, whenever the unstable particles are much

heavier than the stable ones, mR12 � m1,m2,

the UV limit of the SU(3)k–HSG models may

be viewed alternatively as a massless IR → UV
flow between two different coset conformal field

theories:

SU(2)k
U(1)

× SU(2)k
U(1)

−→ SU(3)k
U(1)2

. (21)

As a particular case, the flow between the tricrit-

ical Ising and the critical Ising model is recovered

as a subsystem for k = 2.

In conclusion, the results obtained so far from

the TBA analysis [7] and the calculation of Form

Factors [9] confirm the conjectured relationship

between the S-matrix theories proposed in [2]

and the simply laced HSG theories. Further sup-

port could be obtained by extending the explicit

calculations to other Lie groups different from

SU(3). Moreover, it would be extremely inter-

esting to investigate directly the connection of

the resonance poles with the unstable particles

of the HSG theories.

Acknowledgments

This research is supported partially by CICYT

(AEN99-0589), DGICYT (PB96-0960), and the

EC Commission (TMRGrant FMRX-CT96-0012).

References

[1] Particle Data Group, Eur. Phys. J. C 3 (1998)

1.

[2] J.L. Miramontes and C.R. Fernández-Pousa,

Phys. Lett. B 472 (2000) 392

[3] C.R. Fernández-Pousa, M.V. Gallas, T.J. Hol-

lowood, and J.L. Miramontes, Nucl. Phys. B

484 (1997) 609.

[4] C.R. Fernández-Pousa, M.V. Gallas, T.J. Hol-

lowood, and J.L. Miramontes, Nucl. Phys. B

499 (1997) 673.

[5] G. Breit and E.P. Wigner, Phys. Rev. 49 (1936)

519;

R.J. Eden, P.V. Landshoff, D.I. Olive and

J.C. Polkinghorne, The analytic S-matrix , Cam-

bridge Univ. Press (1966);

S. Weinberg, The Quantum Theory of Fields

(Vol. I), Cambridge Univ. Press (1995).

[6] C.R. Fernández-Pousa and J.L. Miramontes,

Nucl. Phys. B 518 (1998) 745.

[7] O.A. Castro-Alvaredo, A. Fring, C. Korff, and

J.L. Miramontes, Nucl. Phys. B 575 (2000) 535.

[8] A. Fring and C. Korff, Phys. Lett. B 477 (2000)

380.

[9] O.A. Castro-Alvaredo, A. Fring and C. Korff,

Phys. Lett. B 484 (2000) 167;

O.A. Castro-Alvaredo and A. Fring, Identifying

the Operator Content, the Homogeneous Sine-

Gordon models, hep-th/0008044; Renormaliza-

tion group flow with unstable particles, hep-

th/0008208.

[10] A.N. Kirillov, J. Soviet Math. 47 (1989) 2450;

V.V. Bazhanov and N. Reshetikhin, J. Physics

A 23 (1990) 1477;

A. Kuniba, Nucl. Phys. B 389 (1993) 209.

[11] Al.B. Zamolodchikov, Resonance Factorised

Scattering and Roaming Trajectories , preprint

ENS-LPS-335 (1991);

M.J. Martins, Phys. Rev. Lett. 69 (1992) 2461;

Nucl. Phys. B 394 (1993) 339;

P. Dorey and F. Ravanini, Int. J. Mod. Phys. A

8 (1993) 873; Nucl. Phys. B 406 (1993) 708.

5

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB472%2C392
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB484%2C609
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB484%2C609
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB499%2C673
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB499%2C673
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C49%2C519
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C49%2C519
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB518%2C745
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB575%2C535
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB477%2C380
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB477%2C380
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB484%2C167
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB389%2C209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C2461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB394%2C339
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA8%2C873
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA8%2C873
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB406%2C708

