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1. Introduction

Ten years after the work of Cardy [1], Boundary

Conformal Field Theory (BCFT) is experienc-

ing a renewal of interest. This is motivated by

applications to string and brane theory, and to

problems of statistical mechanics and condensed

matter. In these situations, it may be impor-

tant to have an a priori knowledge of the pos-

sible boundary conditions compatible with con-

formal invariance, and to master the algebra of

boundary fields etc. There is, however, another

reason to be interested in BCFT: as we want to

explain in this note, there is much to learn on

the general structure and the quantum symme-

tries of a CFT from the study of its properties in

the presence of a boundary. After a brief review

of notations and general aspects of rational CFT,

we shall discuss how boundary conditions may be

systematically classified in terms of non-negative

integer valued matrix representations of the fu-

sion algebra, or equivalently in terms of graphs

generalising the ADE Dynkin diagrams (see [2]
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for more details). We shall see how the “cells” –

a concept introduced by Ocneanu and associated

with these graphs – determine many properties

of the BCFT or of the associated lattice models

and, in particular, are at the heart of the quan-

tum symmetry of the CFT described by an alge-

braic structure called weak C∗-Hopf algebra. A
more detailed presentation will appear in [3].

2. General set-up

A rational conformal field theory (RCFT) is gen-

erally described by data of different nature:

• Chiral data: Chiral data specify the chiral
algebra A, e.g., the Virasoro algebra itself, or a

W algebra, a current algebra ĝ etc, and its finite
set I of irreducible representations, Vi , i ∈ I ;
notations are such that i = 1 labels the iden-

tity (vacuum) representation and i∗ the conju-
gate of Vi. The fusion rule multiplicities Nijk,
Vi ? Vj = ⊕kNijk Vk , are assumed to be given
by the Verlinde formula,

Nij
k =
∑
`∈I

Sil Sjl (Skl)
∗

S1l
, (2.1)
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with S the symmetric, unitary matrix of the mod-

ular transformations of the characters χi(τ) =

tr e2iπτ(L0−c/24), χi(τ) =
∑
j∈I Sijχj(−1/τ). The

nonnegative integers Nij
k give the dimensions of

linear spaces of chiral vertex operators (CVO)

φkij;t(z) : Vi ⊗ Vj → Vk , z ∈ C , (2.2)

with a finite basis label t = 1, 2, . . .Nij
k . The

chiral data finally include the knowledge of the

duality matrices: the genus 0 fusing F and braid-

ing B(±) matrices, and the matrix S(j), which
gives the modular transformation of 1-point con-

formal block 〈φiji〉 on the torus. These matrices
satisfy a set of consistency relations: pentagon,

hexagon and torus identities [4].

A typical example is provided by the chiral

algebra A = ŝl(2)k, the affine algebra at level k,

for which I = {1, 2, · · · , k+1}, Sij =
√
2/(k + 2)

sin (πij/(k + 2)), and the F are, up to a gauge

transformation, the quantum 6j symbols [5].

Those are the basic ingredients of algebraic

nature in the construction of a RCFT. In the

following, they are supposed to be known.

• Spectral and OPE data: The physical spec-
trum of a RCFT in the bulk, i.e. on a closed

Riemann surface, is described by irreducible rep-

resentations of two copies of the chiral algebra.

Thus the Hilbert space is decomposed according

to

HP = ⊕j,j̄ ∈I Zj j̄ Vj ⊗ V̄j̄ . (2.3)

The integer multiplicities Zj j̄ (with Z11 = 1, ex-

pressing the unicity of the vacuum) are conve-

niently encoded in the modular invariant torus

partition function

Z(τ) =
∑
j,j̄ ∈I

Zjj̄ χj(τ)χj̄(τ)
∗ . (2.4)

The particular case where Zij = δij will be re-

ferred to as the diagonal theory, the others as

“non-diagonal”.

On the other hand, the (primary) physical

fields and their correlators factorise

Φ(i,̄i)(z, z̄) =
∑

j,j̄,k,k̄,t,t̄

d
(k,k̄);t,t̄

(i,̄i)(j,j̄)
φki,j;t(z) ⊗ φk̄ī,j̄;t̄(z̄) .

(2.5)

The expansion coefficients d
(k,k̄);t,t̄

(i,̄i)(j,j̄)
determine,

up to the normalisation of the chiral blocks, the

coefficients of the short distance operator prod-

uct expansion (OPE), i.e., these are the relative

OPE coefficients of the non-diagonal model if d

are chosen trivial for the diagonal model of same

central charge. These numbers are constrained

by the requirement of locality of the physical cor-

relators, which makes use of the braiding matri-

ces B(±). The resulting set of coupled quadratic
equations has been fully solved only in the sl(2)

cases (see [6, 7] and further references therein).

Starting with the ADE classification of the

sl(2) modular invariants [8], it has been grad-

ually realised that behind these data there are

hidden graphs G. A systematic study of the

graphs generalising the sl(2) ADE Dynkin dia-

grams was initiated in [9, 10]. It was empirically

observed that these graphs are encoding a non

trivial information on some spectral and OPE

data, more precisely on those pertaining to the

spin-zero fields of the theory. These graphs Gi,

which share the same set of vertices V , are la-
belled by an index i ∈ I –but it is sufficient to
restrict i to a generating subset (generating in the

sense of fusion)– and their adjacency matrices are

commuting and simultaneously diagonalizable in

an orthonormal basis {ψ}:
• the diagonal part of the physical spectrum, la-
belled by the so-called “exponents” :

E = {j ∈ I|j = j̄, Zjj 6= 0} , (2.6)

counted with the multiplicity Zjj , is in one-to-

one correspondence with the spectrum of eigen-

values of Gi, of the form Sij/S1j, j ∈ E .
• in the sl(2) (ADE) cases the structure con-
stantsMij

k of the so-called Pasquier algebra [11]

can be identified with the (relative) OPE coeffi-

cients of the scalar fields [7]

d
(k,k)
(i,i)(j,j) =Mij

k :=
∑
a∈V

ψia ψ
j
a ψ

k ∗
a

ψ1a
. (2.7)

The summation in (2.7) runs over the set V of
vertices of the Dynkin diagram.

The purpose of this note is to show that the

study of the CFT on a half-plane or a cylinder

(i.e. on a manifold with boundary), [1], provides

an alternative (chiral) approach in which these

graphs and the related algebraic structures be-

come manifest.

2
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3. Graphs and conformal boundary

conditions

We may summarize the results of [2] as follows:

boundary conditions that respect the chiral alge-

bra A are described by a set of commuting, non-

negative integer valued matrices {ni = niab} , i ∈
I , a, b ∈ V , |E| = |V|, s.t. n1 = I, nTi = ni∗ ,

realising a representation of the Verlinde fusion

algebra

ni nj =
∑
k∈I

Nij
k nk . (3.1)

The matrices ni thus admit a spectral decompo-

sition

nia
b =
∑
j∈E

Sij

S1j
ψja ψ

j∗
b , (3.2)

where ψja are unitary matrices of dimension |E| =
|V| and the sum runs over the set {(j, α) , j ∈
I , α = 1, 2, . . . , Zjj}, for simplicity of notation
identified with the set of exponents E . This comes
about as follows: On the upper half-plane param-

etrised by a coordinate z ∈ H+, (resp. on a finite-
width strip w = L

π log z ), with boundary condi-

tions b and a imposed on the negative and posi-

tive real axes, (resp. on the two sides of the strip),

only one copy of the chiral algebra acts: only real

analytic coordinate transformations, ε(z) = ε̄(z̄)

for real z = z̄, are allowed. Thus the Hilbert

space of the theory Hba splits into a linear sum
of representations

Hba = ⊕i∈Iniba Vi . (3.3)

On a finite segment of the strip of length T with

periodic boundary conditions w ∼ w+ T , i.e. on
a cylinder, the partition functions Zb|a is thus a
linear form in the characters

Zb|a(τ) =
∑
i∈I

nib
a χi(τ) , τ =

iT

2L
. (3.4)

The multiplicities nia
b are constrained by the

Cardy consistency condition [1] which expresses

that Zb|a can also be evaluated in a dual way: by
mapping the cylinder to an annulus region in the

full plane, one computes Zb|a as the matrix ele-
ment of the evolution operator between bound-

ary states |a〉 and 〈b|. The latter are decomposed
on a standard basis of complete and orthonormal

“Ishibashi states” |j〉〉 labelled by an exponent

j ∈ E , according to |a〉 = ∑j∈E
ψa
j√
S1j
|j〉〉. This

gives

Zb|a(τ) = 〈b|e
−πi
τ (L0+L0− c

12 )|a〉

=
∑
j∈E

ψa
jψb

j∗

S1j
χj

(−1
τ

)
. (3.5)

Comparing the resulting two expressions for Zb|a
yields the spectral decomposition (3.2). See [2]

for a discussion of the assumptions and a more

detailed derivation.

Each set of matrices {ni} solving (3.1), (3.2)
may be regarded as the adjacency matrices of a

collection of graphs Gi, thus explaining the oc-

curence of graphs with the special spectral prop-

erties noticed above. Solving in general the sys-

tem (3.1) provides a classification of boundary

conditions, labelled by the vertices of the graphs

Gi and specified by the spectrum (3.3). The case

ni = Ni provides the regular representation with

spectrum E = I corresponding to the diagonal
case; then (3.1) reduces to (2.1) with ψ = S and

the boundary states are labelled by the same in-

dices i ∈ I as the representations and primary
fields [1].

• In ŝl(2) RCFT (the WZNW models and
the Virasoro minimal models) this reduces to the

classification of the symmetric, irreducible, non-

negative integer valued matrices of spectrum |γj |
= |S2jS1j

| < 2. This is well known to lead to an
ADE classification, after the spurious “tadpole”

graphs A2n/Z2 have been discarded, on the basis

that their spectrum does not match any known

modular invariant.

• A new situation arises in the sl(3) case,
where there is no known a priori classification

of (oriented) graphs with the required spectral

properties. Solutions may be found [10] and com-

parison with the complete list of modular invari-

ants [12] enables one to discard some spurious so-

lutions and leads to a list of graphs, see [2]. One

also finds that in a few cases, there are isospec-

tral graphs, i.e. more than one solution with a

given spectrum, indicating that there are several

choices of boundary conditions (and in fact of

OPE structure constants, see [2]), for a given

spectrum of spin-zero fields in a RCFT.

3
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4. Ocneanu quantum graph symme-

try

According to Cardy the boundary conditions (a, b)

are created by insertions of fields on the bound-

ary (boundary fields), aΨbj;β(x), β = 1, 2, . . . njb
a ,

x ∈ R. Exploiting some ideas of Ocneanu [13, 14]
one can interpret these fields, extended to the full

plane, as generalised CVO.

Given a solution of the system of equations

(3.1), consider for each j ∈ I an auxiliary Hilbert
space V j ∼= Cmj of dimension mj =

∑
a,b nja

b

with basis states |ej,βba 〉, β = 1, 2, . . . , njab, de-

picted as

.

.

ab

j
or

β

β

j

b a . A scalar product

in ⊕j∈I V j is defined as

〈ej,βab |ej
′,β′
a′b′ 〉 = δbb′δaa′ δjj′ δβ′β

√
Pa Pb

dj
,

dj :=
Sj1

S11
, Pa :=

ψ1a
ψ11

. (4.1)

Restricting to a subspace V i ⊗h V j of V i ⊗ V j ,
with coinciding intermediate labels, one defines

a decomposition V i⊗h V j ∼= ⊕kNijk V k, or, ex-
plicitly,

|ei,ηab 〉 ⊗h |ej,ζbc 〉 =
∑
k∈I

nkc
a∑

γ=1

Nij
k∑

t=1

(1)F bk

[
i

a

j

c

]γ t
η ζ

×
√
Pb

( dk

didj

) 1
4 |ek ,γac (ij; t)〉 . (4.2)

The counting of states in both sides is consistent

due to (3.1). The Clebsch-Gordan coefficients
(1)F ∈ C (“3j- symbols”) satisfy unitarity con-
ditions (completeness and orthogonality) and a

pentagon identity, reflecting the associativity of

the product (4.2), written schematically as

F (1)F (1)F = (1)F (1)F , (4.3)

where F are the 6j-symbols. In the diagonal case

F and (1)F are identified, and (4.3) becomes the

conventional pentagon identity satisfied by the

fusing matrices of the corresponding RCFT.

The space A = ⊕j∈I End (V j) is a matrix al-
gebra⊕j∈IMmj . A matrix unit basis {e(ab) ,(a

′b′)
j;η ,η′

= |ej,ηab 〉〈 ej,η
′

a′b′ | , j ∈ I} in A is identified with a

product of states in V j ⊗ V j∗ , and depicted as
4-point blocks or double triangles
.

.

.or

ba

a b

j

a’ b’

η

η

’

η

η

’
j

b’a’

Along with the matrix (“vertical”) product, a

second “horizontal” product (or, alternatively, a

coassociative coproduct), is defined on A via the
3j-symbols (1)F
.

.

i

bc

b’c’

j

ab

a’b’

Σ F*b’p
p

ac

a’c’

F 
p

(1) (1)
h bp

The algebra generated by these objects is the

Ocneanu double triangle algebra (DTA) [13],

further studied in the subfactor theory, see [15,

16] and references therein. Equipped with a counit

and an antipode satisfying a weakened version of

the Hopf algebra axioms (4(1v) 6= 1v⊗ 1v, etc.),
it was considered in [17] as an example of a weak

C∗- Hopf algebra (WHA) (see also the recent pa-
per [18]). This Ocneanu “graph quantum alge-

bra”, associated to any solution {ni , i ∈ I} of
(3.1), together with its dual algebra Â structure
(see below), appears as the quantum symmetry of

the CFT model, either diagonal or non-diagonal.

5. Generalised CVO (GCVO)

We define operators ⊕j∈I Vj⊗Vj→⊕k∈I Vk⊗Vk
associated with the basis states in the tensor prod-

uct (4.2),

aΨci,β;I(z) =
∑
j,k,t

φkij;t,I(z)⊗
∑
b,α,γ

(1)F ck

[
i

a

j

b

]α t
β γ

×
√

dj

Pc Pb
|ek,αab 〉〈 ej,γcb | , (5.1)

covariant under the action of A; here I labels
descendent states in Vi. Their correlators, ob-
tained by projecting on a state |0〉 ⊗ |e1aa〉 in the
vacuum space V1 ⊗ V 1, as well as their fusing

and braiding properties, are inherited from those

of the conventional CVO. In contrast with previ-

ous approaches introducing quantum symmetry

covariant operators, e.g., [19, 20], note that in

the diagonal case the 6j-symbols F of the re-

lated quantum group (instead of its 3j-symbols)

4
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appear in the r.h.s. of (5.1). For real z the oper-

ators Ψ of (5.1) represent (after an appropriate

choice of normalisation) the boundary fields, and

their short distance x12 ≈ 0 expansion is recov-
ered, with the 3j-symbols (1)F serving as bound-

ary fields OPE coefficients. The recoupling equa-

tion (4.3) expresses then the associativity of the

boundary fields OPE [2] and is equivalent to the

Lewellen boundary fields sewing identity [22].

In general the chiral operators (5.1) have non-

trivial braiding with a new braiding matrix B̂(ε),

with 4 + 2 indices of two types,

aΨbj,α(z1)
bΨck,γ(z2) = (5.2)∑

d,α′,γ′
B̂bd

[
j

a

k

c

]α′ γ′
α γ

(ε) aΨdk,α′(z2)
dΨcj,γ′(z1) ,

z12 /∈ R− , ε = sign (Im z12). The matrices B̂
satisfy various relations:

• Inversion (unitarity) relation
B̂12(ε) B̂21(−ε) = 1 . (5.3)

• The braid group (“Yang-Baxter”) relation
B̂12 B̂23 B̂12 = B̂23 B̂12 B̂23 . (5.4)

• The braiding–fusing (pentagon) identity
B̂ (1)F = (1)F B̂ B̂ , (5.5)

which turns into a recursion relation for B̂, given

the fundamental 3j-symbols,

• Intertwining relation
(1)F (1)F B = B̂ (1)F (1)F , (5.6)

which implies a bilinear representation of B̂ in

terms of the 3j-symbols

B̂bd

[
j

a

k

c

]α′γ′
αγ

(ε) = (5.7)

∑
i ,δ ,t

(1)F bi

[
j

a

k

c

]δ t
αγ

e−iπε4
i
jk (1)F

∗
di

[
k

a

j

c

]δ t
α′γ′

,

where4ijk is the combination of conformal weights
4j +4k −4i.

6. Connection to lattice models

Some of these identities have been already en-

countered in critical lattice models, the ADE Pas-

quier models and their ŝl(n)h−n generalisations,

in which the degrees of freedom may be regarded

as vertices of the previous graphs [23, 10].

In the limit u → −iε∞, (ε = ±1), of the
spectral parameter u, the face Boltzmann weights

W (u) satisfy the same equation (5.4) as the braid-

ing matrix B̂ of (5.2). Indeed, denoting the rep-

resentations of sl(n) by their Young tableau, and

with q = e
2πi
h ,

B̂bd

[
a c

]γ′ α′
γ α
(ε) =

2i q−ε
1
2n lim

u→−iε∞
e−iπεuWbd

(a
c

)γ′ α′
γ α
(u) ,

Wbd(u) = sin(
π

h
−u)δbd+sin(u) [2]q Ubd , U2 = U .

(6.1)

Using (5.7), the Hecke algebra generators U are

expressed via the 3j-symbols, recovering an Ansatz

of Ocneanu [14]

Ubd =
∑
β

(1)F b

[
a c

]β 1
γ α

(1)F
∗
d

[
a c

]β 1
γ′ α′

.

(6.2)

Moreover, equation (5.6) shows that we can

identify the 3j- symbols (1)F with the “intertwin-

ing cells” studied in these models, see e.g. [10];

then lattice results provide solutions for particu-

lar (1)F , namely, those for which one of the labels

in I is equal to .
For sl(2): = 1 , [2]q Ubd = δac

√
Pb Pd
Pa
,

while for sl(3): = ∗ , and these cells (1)F b ∗

exist for all graphs listed in [2] but one, accord-

ing to the recent work of Ocneanu, [14]. (See

also [21], where the existence of the Boltzmann

weights (cells (1)F ) has been proved in the sub-

factor approach and where the relations (5.3) –

(5.7) also appear, for a subclass of graphs corre-

sponding to conformal embeddings.)

7. Bulk fields

For (j, j̄) in the physical spectrum (2.3), i.e., Zjj̄ 6=
0, and z ∈ H+ , define (upper) half-plane bulk
fields by two-point compositions of GCVO (5.1)

ΦH(j,j̄)(z, z̄) =
∑
a,b ,

β′ ,β

Ca,b,a;β,β
′

(j,j̄)
aΨbj,β(z)

bΨaj̄∗,β′(z̄) .

(7.1)

From this operator representation, which can be

also rewritten in terms of the conventional CVO,

5
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one recovers the bulk field small distance z− z̄ =
2i y ≈ 0 expansion, in the leading order

ΦH(j,j̄)(z, z̄) = (7.2)∑
p,a,α,t

R
(j,j̄;t)
(a;α) (p) 〈p|φpjj̄∗ ;t(2iy)|j̄∗〉 aΨap,α(x) + . . . ,

with R =
∑
(1)F C – the bulk-boundary reflec-

tion coefficients of Cardy–Lewellen [22]. Given

the chiral representation (7.1) all the bulk-boun-

dary sewing relations of [22] are derived from the

duality identitities of the conventional CVO.

•Diagonal case: the two basic bulk-boundary
Lewellen equations are not independent and are

equivalent to the torus duality identity of Moore-

Seiberg with R(p) ∼ S(p) [2].

8. The dual DTA and the physical

spectrum

The dual (in the algebraic sense) of Ocneanu

DTA leads to the consideration of new graphs G̃,

[13, 14], (see also [16, 15]), with a set of vertices

x ∈ Ṽ = {1, 2, . . . ,∑i,j (Zij)
2}. These graphs

are described by a set of nonnegative integer val-

ued matrices
(
Ṽij
) y
x
, forming a representation of

the product of two Verlinde algebras, thus gen-

eralising (3.1)

Ṽi1j1 Ṽi2j2 =
∑
i3,j3

Ni1i2
i3Nj1j2

j3 Ṽi3j3 (8.1)

with the additional condition that
(
Ṽij∗
) 1
1
=

Zij , the matrix of (2.4). The eigenvalues of Ṽij
are described by this matrix Z, i.e., are labelled

by the set Ẽ = {(`, ¯̀) , `, ¯̀∈ I , taken with mul-
tiplicity (Z`¯̀)

2}, |Ẽ | = |Ṽ| , and are of the form
Si`Sj ¯̀/S1`S1¯̀. For example in the E6 case, this

graph has 12 vertices that we label by a pair

x = (a, b), a = 1, 2, · · · , 6, b = 1, 2 of two vertices
of the ordinary E6 diagram; the new graph is

generated by Ṽ2,1 and Ṽ1,2 and the corresponding

edges are depicted in red and blue respectively on

the following figure due to Ocneanu

.

P11

P21

P31

P41

P12

P13

14P

P22

P51

P32

P61

P42

On that figure (Pab)ij :=
∑

c=1,5,6 nia
cnjb

c, ex-

pressed in terms of ni of (3.1), give the matri-

ces (Ṽij)1
x, generalising a well known formula for

Z = P11 [24, 25].

This Ocneanu graph G̃ gives rise to a (non-

commutative in general) fusion algebra with struc-

ture constants Ñxy
z ; the nodes of the graph can

be equivalently associated with the matrices Ñx.

This algebra also admits a representation by ma-

trices (ñx)
b
a = ñxa

b of size |V| with nonnegative
integer entries∑

b∈V
ñxa

b ñyb
c =
∑
z∈Ṽ

Ñxy
z ñza

c . (8.2)

These integers describe the dimensions m̃x =∑
a,b ñxa

b of the dual spaces V̂x, spanned by states

(dual triangles) |Ebax;α〉 , α = 1, 2, . . . , ñbax. The
“dual double triangles” span a basis of Â, with
vertical and horizontal products reversed. The

two basis sets are related by a “fusing” matrix,
(2)F , satisfying the pentagon identity

(2)F (2)F = (2)F (1)F (1)F
∗
. (8.3)

More pentagon relations involve the dual 3j- and

6j-symbols; the full set of such relations is named

the “Big Pentagon identity” in [17]. In the diag-

onal cases, all these F matrices coincide. The

problem is to extend this general construction

beyond the diagonal case.

Example: sl(2) Dr series, r =
h
2 + 1 odd.

Here Ṽ = {x ≡ k = 1, 2, . . . , h−1} , Ẽ = {(l, ζ(l)) |
l = 1, 2, . . . , h − 1} , where ζ(l) = h − l for l

even, ζ(l) = l for l odd. Then Ṽij = NiNζ(j)
is diagonalised by S and G̃ = Ah−1 , Ñk = Nk ,

ñk = nk. Hence A is self-dual, with both the 3j-
and 6j-symbols being self-dual. The 3j-symbols
(1)F were found in [26] and it remains to deter-

mine the (2)F to have a non-diagonal example of

WHA.
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While A gives meaning to the generalised
CVO, the CFT interpretation of the dual Â is
less clear. The representations of the Ñ -algebra

carry the labels (j, j̄) of the physical fields with

Z(j,j̄) 6= 0. In the cases Zij = 0, 1, when this
algebra is commutative with only 1-dimensional

representations, one can consider its dual alge-

bra, a generalised Pasquier algebra, with struc-

ture constants

M̃
(k,k̄)

(i,̄i)(j,j̄)
=
∑
x∈Ṽ

Ψ
(i,̄i)
x

Ψ
(1,1)
x

Ψ(j,j̄)x Ψ(k,k̄)∗x , (8.4)

where Ψ
(i,̄i)
x is a unitary matrix diagonalising Ṽij

and Ñx. In all sl(2) cases of this type, i.e., A,

Dodd, E6 , E7 , E8 , one finds [3] a relation gener-

alising (1.4),

M̃
(k,k̄)

(i,̄i)(j,j̄)
=
(
d
(k,k̄)

(i,̄i)(j,j̄)

)2
, (8.5)

involving the relative OPE coefficients of fields of

non-zero spin. For E6, E8 , one has M̃
(k,k̄)

(i,̄i)(j,j̄)
=

Mk
ij M

k̄
īj̄
, in agreement with the known factorisa-

tion of the OPE coefficients in these cases. The

problem remains to recover (8.5) directly in the

field theory framework as it has been achieved in

the boundary CFT [27, 2] for its scalar counter-

part (2.7).

One step towards the CFT interpretation of

the dual DTA structures is the observation that

the system of equations (8.1) and the spectral de-

composition of the matrices Ṽij can be recovered,

generalising the derivation of (3.1) and (3.2), by

considering a partition function Z̃x|y(τ) defined
on a double cylinder and bilinear in the charac-

ters. It is interesting to note that the simplest of

these partition functions, namely the one corre-

sponding to the diagonal case Zij = δij for which

Ṽij = NiNj , has been independently obtained

(for fixed x = y = 1), looking at tensor products

of BCFT [28].
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Poincaré, Phys.Theor. 65 (1996) 15-56,

[hep-th/9404185].

[13] A. Ocneanu, in Lectures on Operator Theory,

Fields Institute, Waterloo, Ontario, April 26–

30, 1995, (Notes taken by S. Goto) Fields Insti-

tute Monographies, AMS 1999, Rajarama Bhat

et al, eds.

[14] A. Ocneanu, Lectures at Bariloche Summer

School, Argentina, Jan 2000.
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[17] G. Böhm and K. Szlachanyi, Lett. Math. Phys.

200 (1996) 437-456 [q-alg/9509008].

[18] D. Nikshych, V. Turaev and L. Vainerman, In-

variants of knots and 3-manifolds from quantum

groupoids, [q-alg/0006078].

[19] G. Moore and N.Yu. Reshetikhin, Nucl. Phys.

B 328 (1989) 557-574.

[20] G. Mack and V. Schomerus, Nucl. Phys. B 370

(1992) 185-230.

[21] F. Xu, Comm. Math. Phys. 192 (1998) 349-403.

[22] J.L. Cardy and D.C. Lewellen, Phys. Lett. B

259 (1991) 274-278; D.C. Lewellen, Nucl. Phys.

B 372 (1992) 654-682.

[23] V. Pasquier, Nucl. Phys. B 285 (1987) 162–172.

[24] P. Di Francesco and J.-B. Zuber, in Recent De-

velopments in Conformal Field Theories, Trieste

Conference, 1989, S. Randjbar-Daemi E. Sezgin

and J.-B. Zuber eds. World Scientific 1990); P.

Di Francesco, Int. J. Mod. Phys. A 7 (1992)

407-500.

[25] V.B. Petkova and J.-B. Zuber, Nucl. Phys. B

463 (1996) 161-193 [hep-th/9510175]; Con-

formal Field Theory and Graphs [hep-th/

9701103].

[26] I. Runkel, Nucl. Phys. B 579 (2000) 561-589

[hep-th/9908046].

[27] G. Pradisi, A. Sagnotti and Ya.S. Stanev, Phys.

Lett. B 381 (1996) 97-104 [hep-th/9603097].

[28] A. Recknagel, in preparation.

8


