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Abstract: We construct a factorizing Drinfel’d twist for a face type model equivalent to the XY Z

model. Completely symmetric expressions for the operators of the monodromy matrix are obtained

1. Introduction

Several integrable quantum spin chain models

within the range of the algebraic Bethe ansatz

method have a distinguished basis of states, which

minimizes quantum effects. That is, the quasi-

particle creation and annihilation operators in

this basis have an appearance devoid of polar-

ization clouds. For the XXX and XXZ models

with underlying group sl(2) the bases in ques-

tion were found by Maillet and Sanchez de San-

tos [1] through the construction of a generalized

Drinfeld twist [2]. The ensuing representation of

the quantum monodromy matrices coincides, as

noted by Terras [3], for the case of the rational

XXX model with the representation provided by

Sklyanin’s functional Bethe ansatz method [4].

An obvious generalization of Sklyanin’s method

(substituting polynomials in the spectral param-

eter by polynomials in the exponential of the

spectral parameter) leads us to the conclusion

that an analogous coincidence holds true for the

trigonometric XXZ model. The purpose of this

talk (based on the [7]) is to report on the gener-

alization of the above results to the elliptic sl(2)-

XY Z model. For this sake we make use of Bax-

ter’s map of the XY Z model onto an ice type

model [5]. This brings us formally near to the

XXX and XXZ models and allows us to con-

struct the corresponding F-transformation in the

quantum space and write down explicit expres-
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sions for the monodromy matrix elements in this

new basis

2. XY Z model and its relation to ice-

type models

In the framework of the Algebraic Bethe Ansatz

[8] the XY Z-model is determined by the elliptic

solution of the Yang-Baxter equation

R12(λ1 − λ2)R13(λ1 − λ3)R23(λ2 − λ3) =
R23(λ2 − λ3)R13(λ1 − λ3)R12(λ1 − λ2)

(2.1)

with

Rxyz(λ− µ) =



a 0 0 d

0 b c 0

0 c b 0

d 0 0 a


 , (2.2)

where

a =
Θ(2η)Θ(λ− µ)
Θ(0)Θ(λ− µ+ 2η) ,

b =
Θ(2η)H(λ− µ)
Θ(0)H(λ− µ+ 2η) ,

c =
H(2η)Θ(λ− µ)
Θ(0)H(λ− µ+ 2η) ,

d =
H(2η)H(λ− µ)
Θ(0)Θ(λ− µ+ 2η) (2.3)

with the notation H(u) = ϑ1
(
u
2K , q

)
, Θ(u) =

ϑ4
(
u
2K , q

)
and ϑ4(z, q) =

∑
m∈Z(−1)nqn

2

e2πinz ,
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ϑ1(z, q) = −iq 14 eiπzθ4(z + τ/2, q) are the stan-
dard theta-functions of a single complex variable.

The somewhat different parametrization as com-

pared to [8] is due to the normalization in order

to achieve unitarity of the R-matrix.

The monodromy matrix T (λ, {λi}) (gener-
alized to the inhomogeneous chain [9], [10]) is

given as the ordered product of Lax operators

Li(λ− λi)=R0i(λ− λi)

T (λ, {λi}) =
LN (λ− zN ) . . . L2(λ− z2)L1(λ − z1) =(

A(λ, {λi}) B(λ, {λi})
C(λ, {λi}) D(λ, {λi})

)
. (2.4)

The presence of the Boltzmann weight d in Eq.

(2.2) reflects the non-conservation of spin, which

is responsible for the absence of a local vacuum

for the Lax operator associated with the above

R-matrix.

To circumvent the problems arising from the eight

vertex nature, we use the vertex–face map estab-

lished by Baxter [5] to obtain a XXZ type (six

vertex) R-matrix by exploiting the relation

Rxyz(λ− µ)φl,l′ ⊗ zm′,l′ =∑
m

w(m,m′|l, l′)φm,m′ ⊗ zm,l (2.5)

valid for all integers l, l′,m,m′ such that |l −
l′|=|l′−m′| = 1 and the summation on the r.h.s.
is over integers m s.t. |m−m′|=|m− l| = 1.
The two dimensional vectors φ, z are given by

φl,l+1 = X(sl + µ); zl+1,l = X(sl + λ)

φl+1,l = X(tl+1 − µ); zl−1,l = X(tl − λ)
(2.6)

with X(u) =
(
H(u)
Θ(u)

)
and the abbrevation sl = s+

2ηl, where s, t are arbitrary complex parameters.

The Boltzmann weights are given by (h(u)

=H(u)Θ(u); ωl= (
s+t
2 + 2ηl −K)):

al = a
′
l = 1;

bl =
h(λ)h(ωl−1)
h(λ+ 2η)h(ωl)

;

b′l =
h(λ)h(ωl+1)

h(λ+ 2η)h(ωl)
;

cl =
h(2η)h(ωl − λ)
h(λ+ 2η)h(ωl)

;

c′l =
h(2η)h(ωl + λ)

h(λ+ 2η)h(ωl)
, (2.7)

where we have introduced the notations: al =

w(l − 1, l|l − 2, l − 1), bl = w(l + 1, l|l, l − 1),
cl = w(l+1, l|l, l+1), a′l = w(l+1, l|l+2, l+1),
b′l = w(l − 1, l|l, l + 1), c′l = w(l − 1, l|l, l − 1).
These weights can be arranged into a matrix

R12(l) =



al 0 0 0

0 bl cl 0

0 c′l b
′
l 0

0 0 0 a′l


 (2.8)

which fulfills the modified Yang-Baxter equation

[11], [12]

R12(l − σ3)R13(l)R23(l − σ1) =
R23(l)R13(l − σ2)R12(l) . (2.9)

The monodromy matrix related to this modified

Yang-baxter equation is

T0,1...N (l) =

R0N (l − σ1 − . . .− σN−1) . . . R02(l − σ1)R01(l),
(2.10)

where 0 denotes the horizontal auxiliary space

(with the asssociated spectral parameter λ0), the

positive integers 1, . . . , N label the vertical local

quantum spaces which span the physical Hilbert

space HN (with associated local inhomogeneities
{λi}), and σi equals ±1 depending on whether
the arrow in the i-th space is up or down (right/

left for the horizontal space). It also sets our

convention to associate the integer in the right

lower corner of the graphical representation of

the monodromy matrix. From (2.9) follows the

equation for the monodromy matrices

R00′(l − σ1 − . . .− σN )T0(l)⊗ T0′(l − σ0) =
T0′(l)⊗ T0(l − σ0′)R00′(l).

(2.11)

It is easy to check that the unitarity relation

R21R12 = 1I is satisfied too.

The construction of the eigenvalues of the

transfer matrix obtained from the initial mon-

odromy matrix (2.4) using the modified mon-

odromy matrix (2.10) is explained in reference
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[8] (One has however to keep in mind that our

monodromy matrix (2.10) differs from that of [8]

by an additional change of basis in the quantum

space).

We will concentrate in what follows on the com-

putation of a factorizing F -matrix for the mon-

odromy matrix (2.10).

3. The F basis

The factorizing F -matrix for two sites defined by

the relation F21R12 = F12 is

F12 =



1 0 0 0

0 1 0 0

0 c′ b′ 0
0 0 0 1



[12]

. (3.1)

The proof of the factorization property amounts

to checking the same relations as those in the

proof of the unitarity of the R-matrix above.

The factorizing F -matrix forN sites (N quan-

tum spaces) turns out to be given by formally the

same expression as found in [6] for the XXX

model

F1...N (l) =
∑
α∈ZN2

PαR
σα
1...N (l)(z1, . . . , zN)

Pα =

N∏
i=1

Pαii , (3.2)

where Pαii projects on the αi-th component in

the i-th space and the permutation σα is uniquely

determined through the conditions

ασα(i+1) ≥ ασα(i) if σα(i+ 1) > σα(i)
ασα(i+1) > ασα(i) if σα(i+ 1) < σα(i) .

(3.3)

The modification of the Yang-Baxter equation

(2.9) enforces a particular rule for the handling

of the integer valued parameter l in the forma-

tion of the intertwining matrix Rσ(l) (related to

the permutation σ), which can be read off from

the modified composition law

Rσσi (l) = Rσ(i),σ(i+1)(l̃i)R
σ(l);

l̃i = l − σσ(1) − . . .− σσ(i−1), (3.4)

where σi is the transposition of i, i+1, and σ an

arbitrary permutation.

Rσ(l) has the intertwining property

Rσ(l)T0,1...N (l) = T0,σ(1)...σ(N)(l)R
σ(l − σ0) .

The matrix F1...N (l) satisfies the factorizing equa-

tion

Rσ1...N (l) = F
−1
σ(1...N)(l)F1...N (l) . (3.5)

A proof of the latter equation can be found in

[7].

The operators of the monodromymatrix (2.10)

in the F basis are obtained by using a recursion

relation, which enables one to express the mon-

odromy matrix for N sites in terms of that for

N − 1 sites [7]:

T̃0,1...N (l) =

(
1I 0

C̃12...N (l) D̃
1
2...N (l)

)
[1]

×

T̃0,2...N (l − σ1)R01(l)×(
1I 0

C̃12...N (l − σ0) D̃12...N (l − σ0)
)−1
[1]

.

(3.6)

This relation can be solved recursively starting

with the one site monodromy matrix which coin-

cides with the Lax operator Li = R0i (2.8).

The solution of the recursion relation finally

yields the following result for the operators of the

monodromy matrix (we use a slight change in no-

tation: b(λ)= h(λ)
h(λ+2η) and denote k=l−

∑N
i=1 σi):

D̃l(λ0) =

h(ωl+1)

h(ω1+ k+l−N2
)
⊗Ni=1

(
b(λ0i) 0

0 1

)
[i]

;

B̃l(λ0) =
h(ωl+1)

h(ωk)

N∑
i=1

ck−1(λ0i)σ−i ×

⊗Nj 6=i
(
b(λ0j) 0

0 b−1(λji)

)
[j]

;

C̃l(λ0) =

N∑
i=1

c′l(λ0i)σ
+
i ×

⊗Nj 6=i
(
b(λ0j)b

−1(λij) 0
0 1

)
[j]

;
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Ãl(λ0) =

h(ω k+l−N
2
)

h(ωk)

{
⊗Ni=1

(
1 0

0 b(λi0)
−1

)
[i]

+

N∑
i=1

ck−1(λ0i)c′l(λ0i)
b(λ0i)

(
0 0

0 1

)
[i]

×

⊗j 6=i
( b(λ0j)
b(λij)

0

0 b(λji)
−1

)
[j]

+

N∑
i6=j

ck−1(λ0i)c′l(λ0j)
b(λj − λk) σi− ⊗ σj+ ×

⊗k 6=i,j
( b(λ0k)
b(λjk)

0

0 b(λki)
−1

)
[k]

}
, (3.7)

where λij=λi − λj .

The above mentioned basis transformation

(2.5) amounts to splitting the model into sectors

with a fixed number of turned spins. To obtain

the spectrum of the XY Z model one uses the

operators B̃l(λ), C̃l(λ) to construct eigenvectors

in the form proposed by [8] (there denoted by

Bk,l(λ) etc.).

4. Conclusion

The form of the F -matrix, Eq. (3.2) and the ap-

pearance of the monodromy matrix in the basis

supplied by the F -matrix, Eq’s (3.7), , are com-

pletely analogous to what has been found in [1]

and [6] for the rational and trigonometric mod-

els. The concrete expressions for Ã, B̃, C̃, D̃ are

in particular manifestly symmetric with respect

to exchanges of the local inhomogeneity parame-

ters λi. The quasiparticle operators B̃ and C̃ are

free from polarization effects due to non-local ex-

change terms.

The argument used in [6] - borrowed from [1] -

concerning the identification of operators corre-

sponding to different entries of the monodromy

matrix relied on the sl(n) symmetry of the ra-

tional model. It is not available for the trigono-

metric and elliptic model. The recursive proce-

dure followed instead in the preceding section is

equally applicable to theXXX ,XXZ andXY Z

model.

It seems rather plausible in view of the formal

similarities of the rational, trigonometric and el-

liptic models that some version of Sklyanin’s func-

tional Bethe ansatz should also be feasible in the

latter case as has already been achieved for the

XY Z Gaudin magnet in [10].
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