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Abstract: Bose-Einstein and Fermi-Dirac correlations show that the emitter dimension

r decreases as the hadron mass increases. Same behaviour is seen for the longitudinal

dimension rz dependence on the transverse mass mT . In both cases the Heisenberg

uncertainty relations yield the same expression for r(m) and rz(mT ). This r behaviour

also describes the interatomic separation of Bose condensates. If r represents the emitter

radius then its energy density reaches for baryon masses the high value of ∼100 GeV/fm3.

One dimensional (1-D) Bose-Einstein correlations (BEC) of identical bosons, and in

particular the pairs π±π±, have been utilised over several decades to estimate the emitter
size. These analyses used in many cases the kinematic variable Q =

√−(q1 − q2)2 where
qi are the four momenta of the two identical bosons. As Q → 0 a BEC enhancement can
be observed in the experimental distribution by comparing it to a similar distribution void

of BEC like e.g., a Monte Carlo generated event sample. The ratio of these two distribu-

tions is then described by the correlation function C2(Q) = 1 + λe
−Q2r2 to yield a value

for r, which is taken to be the emitter dimension. The factor λ, known as the chaoticity

parameter, measures the strength of the BEC effect and can assume the values 0 ≤ λ ≤ 1.

More recently it has been proposed [1] to extract a similar emitter dimension for pairs

of equal baryons by utilising the so called Fermi-Dirac correlations (FDC), that allows

identical fermions at very near phase space, when they are in an s-wave, only to be in

a total spin S=0 state (the Pauli exclusion principle). To this end a method has been

proposed in reference [1] for the direct measurement, as function of Q, of the fraction of

[S = 1]/([S = 0] + [S = 1]) in pairs of spin 1/2 weakly decaying baryons, like the ΛΛ

system. Alternatively one can apply the method used in BEC of identical bosons and look

at the distribution of baryon pairs as Q approaches zero. If a depletion is observed then, by

assuming its origin to be due to the Pauli exclusion principle, an r value can be deduced.

The measured baryon r values can directly be compared to those obtained for bosons as

they also measure the distance between the two hadrons as the set on of a pure s-wave
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state occurs when they approach threshold.

The existing vast data of hadronic Z0 decays, three to four million per LEP experiment,

provide an excellent material for BEC and FDC studies at the same
√
see and in a high

multiplicity, 〈nch〉 '21 hadrons, final state. In particular it was possible to measure r as
a function of the hadron mass. The results of these analyses are shown in Fig. 1 where

average LEP r values [2] are given for charged pion and kaon pairs, for Λ pairs in addition

to an OPAL preliminary r value [3] for antiproton pairs. As seen, the average r values
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Figure 1: The r(m) values (triangles)

obtained from 1-D BEC analyses of the

hadronic Z0 decays at LEP [2] and an OPAL

preliminary [3] value (circle) for antiprotons.

The thin lines are from Eq. 1 for ∆t values

of 10−24 sec (central thin line) and 0.5x10−24

and 1.5x10−24 sec (thin dashed lines). The
thick central line is from the virial theorem

using a general QCD potential [2].

Figure 2: Preliminary DELPHI results [5],

obtained from a 2-D BEC analysis, for the

longitudinal emitter length rπz dependence on

the transverse mass mT in Z
0 decays. The

solid and dashed lines are from Eq. 1 using

∆t values of 2.1x10−24 and 1.0x10−24 sec re-
spectively.

decreases from ∼0.75 fm for pions down to ∼0.15 fm for antiprotons and Λ hyperons.
Whereas the experimental findings that r(mπ) is somewhat larger than r(mK), but equal

within errors, may still be consistent with the string fragmentation model although in its

basic form it expects r(m) to increase with m, the much smaller value obtained for r(mΛ)

and r(mp̄) poses a challenge to the model [4]. On the other hand it has been shown [2] that

by applying the Heisenberg uncertainty relations one can derive an expression for r(m)

that decreases with m, namely:

r(m) =
c
√
~∆t√
m
. (1)
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The prediction of Eq. 1 is drawn in Fig. 1 and is seen to follow the general trend of the

experimental values when ∆t is set to ∼ 10−24 sec, to represent a typical time scale for
strong interactions.

The effective range of two-pion source was also estimated in 2-dimensional (2-D) BEC

analyses, in hadronic interactions as well as in the hadronic Z0 decays [5, 6], as a function

of the pion-pair transverse mass mT . This transverse mass is defined as mT = 0.5 ×∑2
i=1

√
m2 + p2i,T where p

2
1,T and p

2
2,T are the transverse momenta of the two bosons defined

in the longitudinal centre of mass system (LCMS) [7]. The longitudinal and transverse

dimensions rz and rT are then obtained from a fit of an expression of the type C2(Qz, QT ) =

1 + λe−r2zQ2z+r2TQ2T to the data. The DELPHI preliminary results [5] for the longitudinal
dimension rz of two identical charged pion pairs are seen in Fig. 2 to depend on mT in a

very similar way to the r(m) dependence on m (see Fig. 1). In fact, when substituting in

Eq. 1, r by rz and m by mT one obtains the lines shown in Fig. 2 for two chosen values

of ∆t. This similarity can be understood if one remembers that rz and the longitudinal

momentum pz are conjugate observable [8]. Thus one has ∆pz∆rz = 2µvzrz = pzrz = ~c

where µ is the reduced mass of the two hadrons, so that

rz = ~c/pz . (2)

Simultaneously we can also use the uncertainty relation given in energy and time i.e.,

∆E∆t = ~, where the energy is given in GeV and t in seconds utilising the fact that in

the LCMS, p1,z = −p2,z. In as much that the total energy of the boson-pair system is
predominantly determined by the sum of their relativistic mass values, one has

E =

2∑
i=1

√
m2 + p2i,x + p

2
i,y + p

2
i,z =

2∑
i=1

mi,T

√
1 +

p2z
m2i,T

≈
2∑
i=1

(
mi,T +

p2z
2mi,T

)
,

where m1,T and m2,T are the transverse mass of the first and second hadron. At small

Qz, the difference δmT = |m1,T −m2,T |/2 is much smaller than the transverse mass mT =
(m1,T +m2,T )/2, and therefore can be neglected, so after a few algebraic steps one obtains

E = 2mT + p
2
z/mT . Since 2mT is not a function of Qz it may be considered to stay fixed

as Qz → 0 so that
∆E∆t ≈ (p2z/mT )×∆t = ~ . (3)

Combining Eqs. 2 and 3 one finds

rz(mT ) ≈ c
√
~∆t√
mT

, (4)

which is identical to Eq. 1 when replacing r and m respectively by rz and mT . Here it is

worthwhile to note that in heavy ion collisions it was found out [9] that rz ≈ 2/
√
mT (GeV ).

Experimentally a decrease of rT with the increase of mT was also observed [6] but un-

like rz which is a geometrical quantity, rT is a mixture of the transverse radius and the

emission time so that an application of the uncertainty relations is not straightforward.
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An alternative approach for the description of rz(mT ) can be achieved by the so called

Bjorken-Gottfried conjecture that the momentum-energy 4-vector, qµ, is proportional to

the space-time 4-vector, xµ. In this method one did find [10] that rz(mT ) moves from a

typical value of ∼ 1.1 fm for mT = 0.14 GeV to ∼ 0.25 fm for an mT of about 1 GeV.

Another consequence of the Bose-Einstein statistics of identical bosons is the existence

of Bose condensates of bosonic atoms. These condensates, which have been discovered in

1995, are formed by bosonic atoms when cooled down to temperatures in the typical range

of 500nK to 2µK, bellow a critical temperature TB, where the interatomic separation, dBE ,

is of the order of the de Broglie wave length, λ =
√
h2/(2πmkT ). Specific calculations [8]

show that at a very low temperature T0 where T0/TB � 1, the average dBE is equal to

dBE(m) ≈
√
2π

1.378

(
~
2

mkT0

)1/2
. (5)

From this follows that when two different condensates having atomic mass m1 and m2
are at the same temperature T0, way below their individual TB values, the ratio of their

interatomic separation will be equal to dBE(m1)/dBE(m2) =
√
m2/m1 similarly to the

dependence of r (rz) on m (mT ). It is further interesting to note that in as much that it

is permissible to replace, at very low temperatures, kT0 by ∆E and use the uncertainty

relation ∆E = ~/∆t, one derives for dBE(m) the expression given in Eq. 1 for r(m)

multiplied by the factor
√
2π/1.378. This similarity between interatomic separation and

emitter dimension may well be traced back to the close connection between the de Broglie

wave length and the ∆p∆x ≈ ~ Heisenberg uncertainty relation. Caution should however
be exercised when trying to relate the Bose condensates to the production of hadrons at

high energy reactions. Common to both systems is their bosonic nature which allows all

hadrons (atoms) to occupy the same lowest energy state. Furthermore the condensates

are taken to be in a thermal equilibrium state. Among the various models proposed for

the hadron production some attempts [11] have also been made to explore the application

of a statistical thermal-like models however if these will survive is presently questionable.

Finally condensates are taken to be in a coherent state whereas hadron pairs systems for

which an r value can be measured must be at least partially not coherent, i.e. λ 6= 0.

In as much that the r values obtained from the 1-D BEC analyses represent the emitter

radius one can further try and estimate the experimental measured energy density, εexp,
of the emitter by dividing the sum of the hadron-pair masses by a sphere volume of radius

r, that is

εexp =
2m

(4/3)πr3
. (6)

In Fig. 3 the measured energy density of the emitter of pions, kaons and baryons are shown

in units of GeV/fm3. The data points are compared in the figure by the dashed curves

with the values expected when r given by Eq. 1 is inserted in Eq. 6 to give

εmodel =
3

2π

m5/2

c3(~∆t)3/2
. (7)
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As can be seen, the energy density values for
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Figure 3: Emitter energy density as a

function of the hadron-pair mass sum.

The dashed lines are the expectation of

Eq. 7 with ∆t=(1.2 ± 0.3)x10−24 sec.

kaon and pion pairs are lying in a reasonable range

of ∼1 GeV/fm3 and below. On the other hand the
energy density of the baryon pairs reaches an aver-

age value of the order of 100 GeV/fm3, very high

even in comparison to the energy density required

for the formation of a quark-gluon plasma. A sim-

ilar energy density evaluation of the hadron emit-

ter, deduced from 2-D BEC analyses, is problematic

if not only for the fact that rT is not a pure geo-

metrical quantity. In as much that r does in fact

represent the emitter radius then the resulting high

energy density poses a challenge to the existing pro-

duction and hadronisation models for hadrons and

in particular baryons, emerging from high energy

collisions.
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