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Abstract: The oscillating structure in the pp− and pp−elastic scattering differential
cross section at high energy and small momentum transfer is found by the maximum-

entropy method and the overlapping bins procedure. A comparative analysis of these

two methods of identifying the oscillations was performed. We have concluded that the

methods give qualitatively the same results.

1. Introduction

The oscillating structure of the diffraction peak in the differential pp− and pp−elastic cross
sections has been observed for the first time in the [1] in the ISR data [2] and later [3] in

UA4/2 [4] experiment by normalizing the differential cross-section to the smoothly varying

background in the impact parameter representation. In [5] an attempt was made to relate

the observed structure near |t| = 0.1 GeV 2 to the variation of the opacity in b−space,
probably reflecting the density oscillation in matter. The possible existence of oscillations

with even smaller periods was discussed by several authors [6, 7].

In ref. [8] we proposed an entirely different method of identifying oscillations in the

pp− and pp−elastic scattering. Our method was based on the use of overlapping bins of
local slopes and we indicated some characteristic oscillation periods. It is quite obvious

that, in order to determine the nature and periods of oscillations, one has first of all to

increase the reliability of initial information contained in experimental data by suppressing

the influence of statistical fluctuations. This problem can be settled by means of the well

known method of maximum entropy [9], used in many areas of physics. Recently it has

been applied [10] to the hadron scattering data.
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2. The maximum entropy method

The mathematical essence of the maximum entropy method is formulated as follows. Pro-

vided there are N measured data points yk with errors εk and no theory available, the

question arises how to choose the most plausible function Yk among all possible functions

describing this data set. The philosophy is to choose the solution, which contains the least

amount of information in order to avoid false features. Mathematically, this means that

one has to choose such a function Yk that the functional F :

F = χ2 + λR. (2.1)

is minimized. Here χ2 is the least-square term which provides the consistency of the

function Y with the data set y, R is a regularization functional which helps to choose the

correct function containing the least amount of information, and λ is the weighting factor

between the least-square term and the regularization functional. The value of λ has to be

chosen in such a way that the data are neither under- nor overestimated, i.e., χ2 should

be equal to the number of data points N . The χ2 is calculated by means of the standard

formula

χ2 =
N∑
k=1

(Yk − yk)2
ε2k

. (2.2)

It is very important to use realistic error values with method based on a regulariza-

tion functional in order to obtain realistic results. In the maximum-entropy method the

regularization functional is the configurational entropy of the distribution

R = −
N∑
k=1

pk log
pk
mk
, (2.3)

where

pk =
Yk∑N
k=1 Yk

, (2.4)

with mk being the k-th value of the discretized a priori distribution. The basic principle

of the maximum entropy method is that out of all probability distributions which satisfy

given constraints, i.e. fits to the data, one should choose the distribution, which is the

closest to the given a priori probability distribution mk, and, if this is not specified, one

should choose the distribution that is the closest to the uniform distribution. Here we

should point out that unknown Yk are assumed to be independent of each other, which

means that the distribution does not have to be continuous.

3. Application of the maximum entropy method to the differential cross-

section

The question of the role of statistical errors in measured differential cross-section dσdt (s, t)

for pp− and pp−scattering at fixed s within a broad t-interval is of substantial importance,
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because these errors for each data point may be of the same order of magnitude as the

”fine” anomalies of dσdt observed in experiments [2, 4]. The second problem is related

to ambiguous use of different models and theoretical predictions [1, 3, 6] in fitting the

experimental ”curves”. From the standpoint of the ”observed” oscillations, several methods

are now being extensively used. One of the methods is based on theoretical description

of smooth dσdt and subsequent extraction of oscillations (anomalies) by subtracting the

slowly varying ”background” from the experimental differential cross sections. In our new

approach, we first process the experimental
(
dσ
dt

)exper
values according to the ”maximum

entropy criterion” to obtain
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Figure 1: Experimental values of the data at 53 GeV

[2] were calculated by means of Eq. (3.5) (points with

error bars), maximum entropy fits with original errors

(solid curve; χ2/ndf ∼= 1.01 and λ = 0.23 ·106). Dotted
curve was calculated by means of Eq. (5.2).

Yk =

(
dσ

dt

)entr
k

. (3.1)

For this purpose we minimize the

functional (2.1), where

yk =

(
dσ

dt

)exper
k

, (3.2)

and εk are experimental errors of yk.

We use the following parametrization

mk =

(
dσ

dt

)theor
k

=
1

16π
|FN |2 , (3.3)

FN = iσtot exp [btk] .

Here σtot and b are fitted param-

eters. We investigate the experimental differential pp−scattering cross sections at √s = 53
GeV [2]. To minimize the functional (2.1), we used the MINUIT codes [11]. The realistic

results were obtained when χ2/ndf ∼= 1 was achieved. The results of the calculations with
the a priori distribution described above are shown in Fig. 1 for the ratios

Rentrk (t) =

(
dσ
dt

)entr
k(

dσ
dt

)theor
k

, (3.4)

R
exper
k (t) =

(
dσ
dt

)exper
k(

dσ
dt

)theor
k

, (3.5)

and the relevant errors. In spite of the decrease of the amplitude of oscillations, the local

structure especially at t ∼ −0.1 (GeV/c)2 discussed in [5] is still visible.

4. The overlapping bins procedure for obtaining the local slope

An entirely different method of identifying oscillations in the pp− and pp−elastic scattering
was proposed in [8]. Our method was based on the use of overlapping bins of local slopes.
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To check the expected behaviour of the slope

B(s, t) =
d

dt
ln

(
dσ(s, t)

dt

)
(4.1)

over t we shall operate with its ”experimental” value.

Provided that (
dσ

dt

)
=
∣∣∣aebt∣∣∣2 (4.2)

has been measured for a given s at N |t|-points lying in some interval [|t|min, |t|max], we
adopt the following procedure. First, we divide this interval into subintervals or elementary

”bins” (with nb measurements in each of them, assumed for simplicity to be the same for all

bins). Once the first bin is chosen, the second bin is obtained from the first one by shifting

only one point of measurement (of course, one could shift it by any number of points less

or equal to nb, the shift of one point is the minimal one giving rise to the maximal number

of overlapping bins). The third bin is obtained from the second bin by shifting of one data

point etc. Thus, we define N − nb + 1 overlapping bins for a given s. For each (k-th) bin,
nb must be large enough and its width (in |t|) - small enough to allow fitting

(
dσ
dt

)
with the

simplest form directly involving the t-slope b (4.2).

The parameter b represents the value of the t-slope B (< t >k, s) ”measured” at s and

”weighted average” < t >k is defined in the k-th bin as

< t >k= exp

(∑ |ti|
∆yi∑ 1
∆yi

)
, k ∈ [1,N − nb + 1], (4.3)

where ti is the value of t at which the
(
dσ
dt

)
i
is measured with the uncertainty ∆yi; the

summations run over all data points, i = 1, 2, ..., nb of the bin. This yields the ”exper-

imental” values of bk(s, tk) with the corresponding standard errors determined in the fit

of (4.2) to the data. Then the procedure is to be repeated for all bins and ultimately for

the other t’s at which the
(
dσ
dt

)
have been measured. A regular structure in the slope of

forward diffraction cone B(s, t) is found (see Fig. 2).

5. Fourier analysis of the results

To elucidate the nature of the oscillations, we have subjected the obtained ”experimental”

data to a harmonic analysis. For this purpose, we write for the difference

B(t)exp −B(t)theor = a0
2
+

m∑
k=1

[
ak cos

(
k
2π

T
t

)
+ bk sin

(
k
2π

T
t

)]
, (5.1)

where m ≤ n/2 and n is the number of bins and T denotes the t-interval considered.
Usually, this interval spans from Coulomb interference region (∼ 0.01GeV 2) up to the
vicinity of the diffraction minimum (∼ 0.8GeV 2). We have used a fairly large number of
harmonics (∼ 50) to account for the both large and small frequencies that may occur in
slope parameter. The results are plotted in Fig. 2. The oscillations of the slope parameter
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are visible in the whole range considered. Then we calculated the ratio Rf (t) using the

obtained parameters from Fourier analysis

Rf (t) = exp

{
a0t

2
+

m∑
k=1

[
ak
T

2πk
sin

(
k
2π

T
t

)
− bk T

2πk
cos

(
k
2π

T
t

)]
+ c

}
, (5.2)

c being an integration constant.

The resulting curve is shown in
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Figure 2: The oscillations of the slope parameter ob-

tained by the overlapping bins method B(t)exp related

to the smoothly varying function B(t)theor . The solid

line was calculated with the help of Eq. (5.1).

Fig. 1. Both curves have an irregular

behaviour, coincide qualitatively with

each other and follow well the typical

shape of R(t).

6. Concluding remarks

We conclude that in the analyzed cases

the existing data on pp−elastic scat-
tering reveal visible oscillation satis-

fying quite realistic reliability criteria.

Both resulting curves (see Fig. 1) co-

incide qualitatively and show the same

typical feature. After applying such

procedures as the maximum entropy

and overlapping bins methods we can accumulate the data on the fine structure of the

diffraction cone, and subsequently study in detail the nature of this phenomenon.
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