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Abstract: A quantum field theoretic treatment of inclusive deep–inelastic diffractive

scattering is given. The process can be described in the general framework of non–

forward scattering processes using the light–cone expansion in the generalized Bjorken

region. Evolution equations of the diffractive hadronic matrix elements are derived at

the level of the twist–2 contributions. The diffractive parton densities are obtained as

projections of two–variable parton distributions. An analogous formalism applies to the

higher twist contributions.

1. Introduction

Deep inelastic diffractive lepton–nucleon scattering was observed at the electron–proton

collider HERA some years ago [1]. This process is measured in detail by now [2] and

the structure function FD2 (x,Q
2) was extracted. The remarkable experimental observation

was (see e.g. [3] figure 3) that i) the scaling violations of FDIS2 (x,Q2) and F diffr2 (x,Q2) are

about the same, and ii) their ratio is of O(1/8...1/10). The reason for the first observation

should be perturbative and therefore be explained within perturbative QCD. To obtain

also the theoretical understanding for the second aspect, one should find a formulation of

the process such that lattice methods can be applied and find out later what the reason

for this behavior actually is. Moreover, one should try to find a formulation in which

also the higher twists find a field theoretically well–defined place. This is the task of this

investigation1 and leads us to the operator approach to diffractive scattering.

∗Speaker.
1For details see Ref. [4].
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2. Lorentz Structure
The differential diffractive scattering cross section

d5σdiffr =
1

2(s−M2)
1

4
dPS(3)

∑
spins

e4

Q2
LµνW

µν . (2.1)

is characterized by a large rapidity gap ∆ηR ∼ 1/xP between the diffractive jets and the
outgoing proton and depends on the variables x = Q2/(W 2+Q2−M2), t = (p1−p2)2,M2X =
(q+p1−p2)2 and the virtuality of the momentum transferQ2. Here x is the Bjorken variable,
W 2 = (q + p1)

2 the hadronic mass squared, MX the diffractive mass, p1,2 are the in– and

out–going proton momenta. The hadronic tensor for unpolarized scattering depends on

four structure functions

Wµν =

(
−gµν + qµqν

q2

)
W1 +

(
p1µ − qµp1.q

q2

)(
p1ν − qν p1.q

q2

)
W3
M2

(2.2)

+

(
p2µ − qµp2.q

q2

)(
p2ν − qν p2.q

q2

)
W4
M2

+

[(
p1µ − qµ p1.q

q2

)(
p2ν − qν p2.q

q2

)
+

(
p2µ − qµp2.q

q2

)(
p1ν − qν p1.q

q2

)]
W5
M2
,

Since we are going to view the diffractive process in the formalism for non–forward scat-

tering (see e.g. [5]) we introduce the non–forwardness η

η =
q.(p2 − p1)
q.(p2 + p1)

= − xP
2− xP ε

[
−1, −x
2− x

]
, (2.3)

which is directly related to the variable xP.

Most of the data are situated at low values of t. Therefore we study the case t,M2 ∼ 0,
in which p2 and p1 are related by p2 = (1−xP)p1. Out of the above four structure functions
only two remain. To be able to apply quantum field theoretic methods to the process of

diffractive scattering we consider the generalized Bjorken limit

p1.q, p2.q, Q
2 → ∞, x, xP fixed. (2.4)

In this kinematic domain the light–cone dominates and we can consider the process in the

light–cone expansion. Together with the use of Mueller’s optical theorem it is this property

which assures factorization at the level of twist–2 as also found in [6], but allows, more

than this, the extension of the formalism to higher twist.

3. The Compton Amplitude

In inclusive diffractive scattering two color–neutral pieces of the hadronic final state are

very well separated in rapidity: the diffractive proton and the diffractive jet-system. On

the Lorentz-level one therefore may rewrite the process using Mueller’s generalized optical

theorem [7] which is depicted as follows :

– 2 –
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Figure 1: A. Mueller’s optical theorem.

The final–state proton is rotated into an initial state antiproton and diffractive scattering

can thus be viewed as deep–inelastic scattering off the state 〈p1,−p2|. The associated
parton densities are derived from the two–variable distribution functions which emerge in

the non–forward formalism and are related to the expectation value of the scalar quark

operator, cf. [4],

〈p1,−p2|Oq(κ+x, κ−x)|p1,−p2〉 = xp−
∫
Dz e−iκ−xpzf q(z+, z−) , (3.1)

with p± = p2± p1 and pz = p+z++ p−z−. Here we retain only the dominant contribution.
The calculation of the twist–2 contribution in lowest order implies the diffractive vari-

ant of the Callan–Gross relation, which differs from that in the deep–inelastic case

F2(β, η,Q
2) = 2xF1(β, η,Q

2) ≡ FD(3)2 (x,Q2, xP), (3.2)

where β = x/xP. Finally the diffractive parton densities are related to the two–particle

distribution function in (3.1) by

fD(β,Q2, xP) = −
∫ −xP−2x

2−xP

−xP+2x
2−xP

dρf(ρ, 2β + ρ(2− xP)/xP, Q2)

f
D
(β,Q2, xP) = −

∫ −xP−2x
2−xP

−xP+2x
2−xP

dρf(ρ,−2β + ρ(2− xP)/xP, Q2) . (3.3)

4. Evolution Equations

To derive the twist–2 evolution equation of the diffractive structure functions we start from

the general evolution equation for operators on the light cone, see [5]. The all–order singlet

anomalous dimension matrix is γAB(κ+, κ−, κ′+, κ′−;µ2), where κ± are light–cone marks
and µ2 denotes the factorization scale. Forming the evolution equations being associated

to the matrix element 〈p1,−p2|Oq|p1,−p2〉 one notices that the anomalous dimensions are
independent of κ+ which can be set to 0. Furthermore, the all–order rescaling relation

γAB(κ+, κ−, κ′+, κ
′
−;µ

2) = σdABγAB(σκ+, σκ−, σκ′+, σκ
′
−) , (4.1)
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applies, where dAB = 2+dA−dB and dq = 1, dG = 2. As shown in [4] an evolution equation
may be obtained for the diffractive parton densities fA(ϑ, η, µ2), where ϑ = z− + z+/η is
the characteristic internal momentum fraction. These distributions have a much wider

support than [0, 1] in this variable. Upon taking the absorptive part, ϑ = 2β holds and the

final twist–2 evolution equations read

µ2
d

dµ2
fDA (β, xP;µ

2) =

∫ 1
β

dβ′

β′
PBA

(
β

β′
;µ2
)
fDB (β

′, xP;µ2) . (4.2)

5. Conclusions

The scattering cross section for unpolarized diffractive ep scattering depends on four struc-

ture functions. For t ∼ 0 only two structure functions emerge. In the operator approach
the process can be interpreted as deeply inelastic scattering off a state 〈p1,−p2| formed
out of an initial state proton of momentum p1 and an antiproton of momentum p2 using

Mueller’s optical theorem. The Callan–Gross relation gets modified. The evolution of the

twist–2 contributions to the diffractive structure functions was shown to be forward and to

affect only β, which compares to Bjorken x in the deep–inelastic case. The second dimen-

sionless variable describing the process, xP resp. the non–forwardness η, behaves as a pure

parameter and does not contribute to the evolution kernels. The present method applies

analogously to the contributions of higher twist, as long as light-cone dominance can be

assured. It is desirable to measure the operator matrix elements being derived using lattice

methods and to compare them to those of the deep–inelastic case. In this way the value of

the respective ratio being measured by experiment might be understood in the future.
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