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Abstract: We overview the detailed analysis of ε′/ε within the Standard Model, pre-
sented in ref. [1]. When all sources of large logarithms are considered, both at short and

long distances, it is possible to perform a reliable Standard Model estimate of ε′/ε. The
strong S–wave rescattering of the final pions has an important impact on this observ-

able [1, 2]. The Standard Model prediction is found to be [1] Re (ε′/ε) = (1.7±0.9) ·10−3,
in good agreement with the most recent experimental measurements. A better estimate

of the strange quark mass would reduce the uncertainty to about 30%.

1. Introduction

In recent times the determination of Re (ε′/ε) has stimulated a lot of work both on the
theoretical and experimental sides. The latest has been recently clarified by the new

NA48 [3], Re (ε′/ε) = (15.3± 2.6) · 10−4 , and the KTEV [4], Re (ε′/ε) = (20.7± 2.8) · 10−4 ,
results. The present experimental world average is [3]–[6]

Re
(
ε′/ε
)
= (17.2 ± 1.8) · 10−4 . (1.1)

The theoretical prediction has been the subject of many debates since different groups,

using different methods or approximations obtained different results [7]–[12]. Recently

however it has been observed [1] that once all essential ingredients are taken into account,

including final state interactions (FSI) [2], one can give a reliable estimate of Re (ε′/ε)
∗Speaker.
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which is in perfect agreement with the experimental value. In ref. [1] a detailed analysis is

presented, which includes the evaluation of all large logarithmic corrections both at short

and long distances; the resulting Standard Model prediction is

Re
(
ε′/ε
)
= (17 ± 9) · 10−4 . (1.2)

The subject of this talk is a review of the main ingredients in the calculation of ε′/ε.
The physical origin of ε′/ε is at the electroweak scale, where the flavor–changing pro-

cesses can be described in terms of quarks, leptons and gauge bosons with the usual gauge

coupling perturbative expansion. At the scale MZ the heavy gauge bosons W
± and Z, and

the top quark are integrated out of the theory. The dynamics is then described in terms

of Wilson coefficients Ci(µ) and operators Qi(µ), via a Lagrangian of the form

L∆S=1eff = −GF√
2
Vud V

∗
us

∑
i

Ci(µ) Qi(µ). (1.3)

The values of the coefficients Ci are matched with the underlying theory at the electroweak

scale ∼MZ . Then, using the Operator Product Expansion (OPE) [13] and renormalization
group equations [14], one can evaluate the Wilson coefficients at any scale µ summing up

the short–distance logarithms. The overall renormalization scale µ separates the short–

(M > µ) and long– (m < µ) distance contributions, which are contained in Ci(µ) and Qi,

respectively. The physical amplitudes are independent of µ; thus, the explicit scale (and

scheme) dependence of the Wilson coefficients should cancel exactly with the corresponding

dependence of the Qi matrix elements between on-shell states.

Our knowledge of ∆S = 1 transitions has improved qualitatively in recent years,

thanks to the completion of the next-to-leading logarithmic order calculation of the Wilson

coefficients [15, 16]. All gluonic corrections of O(αns tn) and O(αn+1s tn), where t ≡ logM/m
and M and m are any scales appearing in the evolution, are already known. Moreover the

full mt/MW dependence (to first order in αs and α) has been taken into account at the

electroweak scale. We will fully use this information up to scales µ ∼ O(1 GeV), without
making any unnecessary expansion. At a scale µ < mc one has a three–flavor theory

described by a Lagrangian of the same general form as in eq. (1.3). The difficult and still

unsolved problem resides in the calculation of the hadronic matrix elements. As we will

see in the following the large–Nc expansion and Chiral Perturbation Theory (χPT) allow

to estimate those matrix elements with sufficient accuracy for the determination of ε′/ε.
In the following we adopt the usual isospin decomposition:

A[K0 → π+π−] ≡ A0 + 1√
2
A2 , A[K0 → π0π0] ≡ A0 −

√
2A2 . (1.4)

The complete amplitudes AI ≡ AI exp
{
iδI0
}
include the strong phase shifts δI0 . The S–

wave π-π scattering generates a large phase-shift difference between the I = 0 and I = 2

partial waves [17]:
(
δ00 − δ20

)
(M2K) = 45

◦ ± 6◦ . There is a corresponding dispersive FSI
effect in the moduli of the isospin amplitudes, because the real and imaginary parts are

related by analyticity and unitarity. The presence of such a large phase-shift difference
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clearly signals an important FSI contribution to AI . In terms of the K → ππ isospin
amplitudes,

ε′

ε
= eiΦ

ω√
2|ε|

[
Im(A2)

Re(A2)
− Im(A0)
Re(A0)

]
. (1.5)

Due to the famous “∆I = 1/2 rule”, ε′/ε is suppressed by the ratio ω = Re(A2)/Re(A0) ≈
1/22 . The phases of ε′ and ε turn out to be nearly equal: Φ ≈ δ20 − δ00 + π4 ≈ 0 . The CP–
conserving amplitudes Re(AI), their ratio ω and |ε| are usually set to their experimentally
determined values. A theoretical calculation is then only needed for Im(AI). Using the

short–distance Lagrangian (1.3), the CP–violating ratio ε′/ε can be written as [7]

ε′

ε
= Im (V ∗tsVtd) e

iΦ GF
2|ε|

ω

|Re(A0)|
[
P (0) (1− ΩIB)− 1

ω
P (2)
]
, (1.6)

where the quantities P (I) =
∑
i yi(µ) 〈(ππ)I |Qi|K〉 contain the contributions from hadronic

matrix elements with isospin I, ΩIB = (1/ω) Im(A2)IB/Im(A0) parameterizes isospin

breaking corrections and yi(µ) are the CP–violating parts of the Wilson coefficients: Ci(µ)=

zi(µ) + τ yi(µ) with τ = −VtdV ∗ts/VudV ∗us. The factor 1/ω enhances the relative weight of
the I = 2 contributions. In the Standard Model, P (0) and P (2) turn out to be dominated

respectively by the contributions from the QCD penguin operator Q6 and the electroweak

penguin operator Q8 [9],

Q6 = (sαdβ)V−A
∑
q(qβqα)V+A , Q8 =

3
2 (sαdβ)V−A

∑
q eq
(
qβqα

)
V+A

. (1.7)

A recent improved calculation of Ωπ
0η
IB at O(p4) in χPT has found the result [18]
Ωπ

0η
IB = 0.16 ± 0.03 . (1.8)

2. Chiral Perturbation Theory

Below the resonance region and using global symmetry considerations one can define an

effective field theory in terms of the QCD Goldstone bosons (π,K, η). The χPT formulation

of the SM [19, 20, 21] describes the meson–octet dynamics through a perturbative expansion

in powers of the ratio of momenta and quark masses over the chiral symmetry breaking scale

(Λχ ∼ 1GeV). The operator content of the theory is fixed by chiral symmetry. At lowest
order, the most general effective bosonic weak Lagrangian, with the same SU(3)L⊗SU(3)R
transformation properties and quantum numbers as the short–distance Lagrangian (1.3),

contains three terms transforming as (8L, 1R), (27L, 1R) and (8L, 8R) whose corresponding

couplings are denoted by g8, g27 and gew.

The isospin amplitudes AI have been computed up to next–to–leading order in the
chiral expansion [22]–[27]. Decomposing the isospin amplitudes according to their repre-

sentation components AI = ΣRA(R)I , the results of those calculations can be written in the
form (the expressions for A(ew)0 , A(27)0 , A(27)2 can be found in ref. [1]):

A(8)0 = −
GF√
2
VudV

∗
us

√
2 fπ g8 (M

2
K −M2π)

[
1 + ∆LA(8)0 +∆CA(8)0

]
,

A(ew)2 =
GF√
2
VudV

∗
us

2

3
e2 f3π g8

[
gew

(
1 + ∆LA(ew)2

)
+∆CA(ew)2

]
. (2.1)
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These formulae contain the chiral one–loop corrections ∆LA(R)I , and local contributions
∆CA(R)I from O(p4) χPT counterterms.
It is convenient to rewrite these amplitudes in the form A(R)I = A(R)∞I × C(R)I , where

A(R)∞I is the contribution at leading order in the large–Nc expansion while the factors C(R)I
represent the next–to–leading order (NLO) correction in the same expansion. The chiral

loop contributions are NLO corrections in 1/Nc. In order to determine A(R)∞I one needs

only to match properly χPT with the effective short distance Lagrangian in eq. (1.3) and

so determine the χPT couplings. As an example we have (a more complete list can be

found in ref. [1]):

g∞8
[
1 + ∆CA(8)0

]∞
={

−2
5
C1(µ) +

3

5
C2(µ) +C4(µ)− 16L5 C6(µ)

[
M2K

(ms +mq)(µ) fπ

]2}
fKπ0 (M

2
π) , (2.2)

e2 g∞8
[
gew +∆CA(ew)2

]∞
= −3C8(µ)

[
M2K

(ms +mq)(µ) fπ

]2 [
1 +
4L5
f2π
M2π

]

+
3

2
[C7 − C9 − C10](µ) M

2
K −M2π
f2π

fKπ0 (M
2
π) , (2.3)

where fKπ0 (M
2
π) ≈ 1 + 4L5M2π/f2π is the Kπ scalar form factor at the pion mass scale,

L5 is a coupling of the strong O(p4) scalar Lagrangian and mq ≡ mu = md. In the limit
Nc →∞, L∞5 = (1/4)f2π(fK/fπ − 1)/(M2K −M2π) ≈ 2.1 · 10−3 and fKπ0 (M2π) ≈ 1.02.
These results are equivalent to the standard large–NC evaluation of the usual bag

parameters Bi. In particular, for ε
′/ε, where only the imaginary part of the gi couplings

matter [i.e. Im(Ci)], the leading order large–Nc estimate amounts to B
(3/2)
8 ≈ B(1/2)6 = 1.

Therefore, up to minor variations of some input parameters, the corresponding ε′/ε pre-
diction, obtained at lowest order in both the 1/NC and χPT expansions, reproduces the

published results of the Munich [7] and Rome [8] groups. Thus at this order there is a

large numerical cancellation between the I = 0 and I = 2 contributions, leading to an

accidentally small value of ε′/ε.
Notice that the strong phase shifts are induced by chiral loops and, thus, they are

exactly zero at this leading order approximation.

The large–NC limit has been only applied to the matching between the 3–flavor quark

theory and χPT. The evolution from the electroweak scale down to µ < mc has to be done

without any unnecessary expansion in powers of 1/NC ; otherwise, one would miss large

corrections of the form 1
NC
ln (M/m), withM � m two widely separated scales [28]. Thus,

the Wilson coefficients contain the full µ dependence.

At large–Nc the operatorsQi (i 6= 6, 8) factorize into products of left– and right–handed
vector currents, which are renormalization–invariant quantities. The matrix element of each

single current represents a physical observable which can be directly measured; its χPT

realization just provides a low–energy expansion in powers of masses and momenta. Thus,

the large–NC factorization of these operators does not generate any scale dependence. Since

the anomalous dimensions of Qi (i 6= 6, 8) vanish when NC → ∞ [28], a very important
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ingredient is lost in this limit [29]. To achieve a reliable expansion in powers of 1/NC , one

needs to go to the next order where this physics is captured [29, 30]. This is the reason why

the study of the ∆I = 1/2 rule has proved to be so difficult. Fortunately, these operators

are numerically suppressed in the ε′/ε prediction.
The only anomalous dimension components which survive when NC →∞ are the ones

corresponding to Q6 and Q8 [28, 31]. One can then expect that the matrix elements of these

two operators are well approximated by this limit [29, 30, 32]. These operators factorize

into color–singlet scalar and pseudoscalar currents, which are µ dependent. This generates

the factors 〈q̄q〉(2)(µ) ≈ −M2K f2π/(ms +mq)(µ) which exactly cancel the µ dependence of
C6,8(µ) at large–NC [28, 29, 30, 31, 32, 33]. It remains a dependence at next-to-leading

order. While the real part of g8 gets its main contribution from C2, Im(g8) and Im(g8 gew)

are governed by C6 and C8, respectively. Thus, the analyses of the CP–conserving and

CP–violating amplitudes are very different. There are large 1/NC corrections to Re(gi)

[29, 30, 32], which are needed to understand the observed enhancement of the (8L, 1R)

coupling. On the contrary, the large–NC limit can be expected to give a good estimate of

Im(gi).

3. Chiral loop corrections

The large–Nc amplitudes in eq. (2.3) do not contain any strong phases δ
I
0 . Those phases

originate in the final rescattering of the two pions and, therefore, are generated by chiral

loops which are of higher order in the 1/NC expansion. Since the strong phases are quite

large, specially in the isospin–zero case, one should expect large higher–order unitarity

corrections. The multiplicatively correction factors C(R)I contain the chiral loop contri-

butions we are interested in. At the one loop, they take the following numerical values

(C(R)I ≈ 1 + ∆LA(R)I ; see ref. [1] for a complete list):

C(8)0 = 1.27 ± 0.05 + 0.46 i , C(27)2 = 0.96 ± 0.05 − 0.20 i , C(ew)2 = 0.50 ± 0.24 − 0.20 i .
(3.1)

The central values have been evaluated at the chiral renormalization scale ν = Mρ. To

estimate the corresponding uncertainties we have allowed the scale ν to vary between 0.6

and 1 GeV. The scale dependence is only present in the dispersive contributions and should

cancel with the corresponding ν dependence of the local χPT counterterms. However, this

dependence is next-to-leading in 1/NC and, therefore, is not included in our large–NC
estimate of the O(p4) and O(e2p2) chiral couplings. The ν dependence of the chiral loops
would be cancelled by the unknown 1/NC–suppressed corrections ∆CA(R)I (ν)−∆CA(R)∞I ,

that we are neglecting in the factors C(R)I . The numerical sensitivity of our results to the
scale ν gives then a good estimate of those missing contributions.

The numerical corrections to the 27–plet amplitudes do not have much phenomenolo-

gical interest for CP–violating observables, because Im(g27) = 0. Remember that the CP–

conserving amplitudes Re(AI) are set to their experimentally determined values. What is

relevant for the ε′/ε prediction is the 35% enhancement of the isoscalar octet amplitude
Im[A

(8)
0 ] and the 46% reduction of Im[A

(ew)
2 ]. These destroy the accidental lowest–order

– 5 –
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cancellation between the I = 0 and I = 2 contributions, generating a sizeable enhancement

of ε′/ε.
A complete O(p4) calculation [18, 24] of the isospin–breaking parameter ΩIB is not yet

available. The value 0.16 quoted in eq. (1.8) only accounts for the contribution from π0–η

mixing [18] and should be corrected by the effect of chiral loops. Since |C(27)2 | ≈ 0.98±0.05,
one does not expect any large correction of Im(A2)IB , while we know that Im[A

(8)
0 ] gets

enhanced by a factor 1.35. Taking this into account, one gets the corrected value ΩIB ≈
Ωπ

0η
IB

∣∣∣C(27)2 /C(8)0
∣∣∣ = 0.12 ± 0.05 , where the quoted error is an educated theoretical guess.

This value agrees with the result ΩIB = 0.08 ± 0.05 ± 0.01, obtained in ref. [34] by using
three different models [9, 27, 30, 35, 36, 37] to estimate the relevant O(p4) chiral couplings.

4. FSI at higher orders

Given the large size of the one-loop contributions, one should worry about higher–order

chiral corrections.

The large one-loop FSI correction to the isoscalar amplitudes is generated by large

infrared chiral logarithms involving the light pion mass [2]. These logarithms are universal,

i.e. their contribution depends exclusively on the quantum numbers of the two pions in

the final state [2]. As a result, they give the same correction to all isoscalar amplitudes.

Identical logarithmic contributions appear in the scalar pion form factor [20], where they

completely dominate the O(p4) χPT correction.
Using analyticity and unitarity constraints [38], these logarithms can be exponentiated

to all orders in the chiral expansion [2]. The result can be written as: C(R)I ≡ C(R)I (M2K) =
ΩI(M

2
K , s0) C(R)I (s0) . The Omnès [38, 39, 40] exponential

ΩI(s, s0) ≡ eiδI0 (s) <I(s, s0) = exp
{
(s− s0)
π

∫
dz

(z − s0)
δI0(z)

(z − s− iε)
}

(4.1)

provides an evolution of C(R)I (s) from an arbitrary low–energy point s0 to s ≡ (pπ1 + pπ2)2 =
M2K . The physical amplitudes are of course independent of the subtraction point s0. Intu-

itively, what the Omnès solution does is to correct a local weak K → ππ transition with
an infinite chain of pion–loop bubbles, incorporating the strong ππ → ππ rescattering to
all orders in χPT. The Omnès exponential only sums a particular type of higher–order

Feynman diagrams, related to FSI. Nevertheless, it allows us to perform a reliable estimate

of higher–order effects because it does sum the most important corrections. Moreover, the

Omnès exponential enforces the decay amplitudes to have the right physical phases.

The Omnès resummation of chiral logarithms is uniquely determined up to a poly-

nomial (in s) ambiguity [2, 38, 41], which has been solved with the large–NC amplitude

A(R)∞I . The exponential only sums the elastic rescattering of the final two pions, which is

responsible for the phase shift. Since the kaon mass is smaller than the inelastic threshold,

the virtual loop corrections from other intermediate states (K → Kπ,Kη, ηη,KK̄ → ππ)
can be safely estimated at the one loop level; they are included in C(R)I (s0).
Taking the chiral prediction for δI0(z) and expanding ΩI(M

2
K , s0) to O(p2), one should

reproduce the one-loop χPT result. This determines the factor C(R)I (s0) to O(p4) in the

– 6 –
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chiral expansion. It remains a local ambiguity at higher orders [2, 38, 41]. To estimate the

remaining sensitivity to those higher order corrections, we have changed the subtraction

point between s0 = 0 and s0 = 3M
2
π and have included the resulting fluctuations in the final

uncertainties. At ν = Mρ, we get the following values for the resummed loop corrections

(
∣∣∣C(R)I ∣∣∣ = <I(M2K , s0) C(R)I (s0)):∣∣∣C(8)0 ∣∣∣ = 1.31 ± 0.06 , ∣∣∣C(27)2

∣∣∣ = 1.05 ± 0.05 , ∣∣∣C(ew)2

∣∣∣ = 0.62 ± 0.05 . (4.2)

These results agree within errors with the one-loop chiral calculation of the moduli of the

isospin amplitudes, indicating a good convergence of the chiral expansion.

5. Final results

The infrared effect of chiral loops generates an important enhancement of the isoscalar

K → ππ amplitude. This effect gets amplified in the prediction of ε′/ε, because at lowest
order (in both 1/NC and the chiral expansion) there is an accidental numerical cancellation

between the I = 0 and I = 2 contributions. Since the chiral loop corrections destroy this

cancellation, the final result for ε′/ε is dominated by the isoscalar amplitude. Thus, the
Standard Model prediction for ε′/ε is finally governed by the matrix element of the gluonic
penguin operator Q6.

A detailed numerical analysis has been provided in ref. [1]. The short–distance Wilson

coefficients have been evaluated at the scale µ = 1 GeV. Their associated uncertainties

have been estimated through the sensitivity to changes of µ in the range Mρ < µ < mc
and to the choice of γ5 scheme. Since the most important αs corrections appear at the

low–energy scale µ, the strong coupling has been fixed at the τ mass, where it is known [42]

with about a few percent level of accuracy: αs(mτ ) = 0.345±0.020. The values of αs at the
other needed scales can be deduced through the standard renormalization group evolution.

Taking the experimental value of ε, the CP–violating ratio ε′/ε is proportional to the
CKM factor Im(V ∗tsVtd) = (1.2±0.2)·10−4 [43]. This number is sensitive to the input values
of several non-perturbative hadronic parameters adopted in the usual unitarity triangle

analysis; thus, it is subject to large theoretical uncertainties which are difficult to quantify

[44]. Using instead the theoretical prediction of ε, this CKM factor drops out from the ratio

ε′/ε; the sensitivity to hadronic inputs is then reduced to the explicit remaining dependence
on the ∆S = 2 scale–invariant bag parameter B̂K . In the large–NC limit, B̂K = 3/4. We

have performed the two types of numerical analysis, obtaining consistent results. This

allows us to better estimate the theoretical uncertainties, since the two analyses have

different sensitivity to hadronic inputs.

The final result quoted in ref. [1] is:

Re
(
ε′/ε
)
=
(
1.7 ± 0.2+0.8−0.5 ± 0.5

) · 10−3 = (1.7± 0.9) · 10−3 . (5.1)

The first error comes from the short–distance evaluation of Wilson coefficients and the

choice of the low–energy matching scale µ. The uncertainty coming from varying the

strange quark mass in the interval (ms + mq)(1GeV) = 156 ± 25MeV [45] is indicated

– 7 –
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by the second error. The most critical step is the matching between the short– and long–

distance descriptions. We have performed this matching at leading order in the 1/NC
expansion, where the result is known to O(p4) and O(e2p2) in χPT. This can be expected
to provide a good approximation to the matrix elements of the leadingQ6 andQ8 operators.

Since all ultraviolet and infrared logarithms have been resummed, our educated guess for

the theoretical uncertainty associated with 1/NC corrections is ∼ 30% (third error).
A better determination of the strange quark mass would allow to reduce the uncertainty

to the 30% level. In order to get a more accurate prediction, it would be necessary to have

a good analysis of next–to–leading 1/NC corrections. This is a very difficult task, but

progress in this direction can be expected in the next few years [9, 11, 30, 46, 47, 48].

To summarize, using a well defined computational scheme, it has been possible to pin

down the value of ε′/ε with an acceptable accuracy. Within the present uncertainties,
the resulting Standard Model theoretical prediction (1.2) is in good agreement with the

measured experimental value (1.1).

I.S. wishes to thank the organizers of EPS2001 for the nice meeting. This work has

been partially supported by the TMR Network “EURODAPHNE” (Contr.No. ERBFMX–
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