Beyond "naive" factorization in exclusive radiative B-meson decays

Thorsten Feldmann ${ }^{* \dagger}$
Institut für Theoretische Physik E, RWTH Aachen, 52056 Aachen, Germany
E-mail: 'f̄1dmann@physik.rwth-aachen.de'

Abstract: We apply the QCD factorization approach to exclusive, radiative B meson decays in the region of small invariant photon mass. We calculate factorizable and nonfactorizable corrections to leading order in the heavy quark mass expansion and next-to-leading order in the strong coupling constant. Phenomenological consequences for the $B \rightarrow K^{*} \gamma$ decay rate and the $B \rightarrow K^{*} \ell^{+} \ell^{-}$forward-backward asymmetry are discussed.

> matrix elements of purely hadronic operators in the weak effective Hamiltonian with a photon radiated from one of the internal quarks. In Ref. 亩 we have computed these nonfactorizable corrections and demonstrated that exclusive, radiative decays can be treated in a similarly systematic manner as their inclusive counterparts. As a result we obtain the branching fractions for $B \rightarrow K^{*} \gamma$ and $B \rightarrow K^{*} \ell^{+} \ell^{-}$for small invariant mass of the lepton pair to next-to-leading logarithmic (NLL) order in renormalization-group improved perturbation theory.

In the "naive" factorization approach, exclusive radiative B decays are described in terms of hadronic matrix elements of the electromagnetic penguin operator \mathcal{O}_{7} and the semi-leptonic operators $\mathcal{O}_{9,10}[2 \overline{2}]$. These are parametrized in terms of the corresponding tensor, vector and axial-vector $B \rightarrow K^{*}$ transition form factors $\left(T_{1,2,3}\left(q^{2}\right), V\left(q^{2}\right), A_{0,1,2}\left(q^{2}\right)\right)$. Factorizable quark-loop contributions (Fig. 远) with the four-quark operators \mathcal{O}_{1-6} are taken into account by using "effective" Wilson-coefficients, $C_{7} \rightarrow C_{7}^{\text {eff }}, C_{9} \rightarrow C_{9}^{\text {eff }}\left(q^{2}\right)$, renormalized at the scale $\mu=m_{b}$.

[^0]
（a）

（b）

（c）

Figure 1：LO contributions to $\left\langle\gamma^{*} \bar{K}^{*}\right| H_{\text {eff }}|\bar{B}\rangle$ ．The circled cross marks the possible insertions of the virtual photon line．In（a）and（b）the spectator line is not shown．
 to introduce generalized form factors $\mathcal{T}_{i}\left(q^{2}\right)$ for the transition into a virtual photon $B \rightarrow$ $K^{*} \gamma^{*}$ as follows，

$$
\begin{aligned}
& \left\langle\gamma^{*}(q, \mu) \bar{K}^{*}\left(p^{\prime}, \varepsilon^{*}\right)\right| H_{\mathrm{eff}}|\bar{B}(p)\rangle=-\frac{G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \frac{i g_{\mathrm{em}} m_{b}}{4 \pi^{2}} \\
& \quad\left\{2 \mathcal{T}_{1}\left(q^{2}\right) \epsilon^{\mu \nu \rho \sigma} \varepsilon_{\nu}^{*} p_{\rho} p_{\sigma}^{\prime}-i \mathcal{T}_{2}\left(q^{2}\right)\left[\left(M_{B}^{2}-m_{K^{*}}^{2}\right) \varepsilon^{* \mu}-\left(\varepsilon^{*} \cdot q\right)\left(p^{\mu}+p^{\prime \mu}\right)\right]\right. \\
& \left.\quad-i \mathcal{T}_{3}\left(q^{2}\right)\left(\varepsilon^{*} \cdot q\right)\left[q^{\mu}-\frac{q^{2}}{M_{B}^{2}-m_{K^{*}}^{2}}\left(p^{\mu}+p^{\prime \mu}\right)\right]\right\}
\end{aligned}
$$

In the＂naive＂factorization approach these new functions reduce to $\mathcal{T}_{i}\left(q^{2}\right)=C_{7}^{\text {eff }} T_{i}\left(q^{2}\right)+\ldots$ Following the QCD factorization approach to exclusive B decays［ ${ }^{3}$ ］，factorizable and non－ factorizable radiative corrections are calculable in the heavy quark mass limit and for small photon virtualities（in practice $q^{2}<4 m_{c}^{2}$ ）．

At leading order（LO）in the strong coupling constant，the generalized form factors read

$$
\begin{align*}
\mathcal{T}_{1}\left(q^{2}\right)= & C_{7}^{\text {eff }} T_{1}\left(q^{2}\right)+Y\left(q^{2}\right) \frac{q^{2}}{2 m_{b}\left(M_{B}+m_{K^{*}}\right)} V\left(q^{2}\right), \\
\mathcal{T}_{2}\left(q^{2}\right)= & C_{7}^{\mathrm{eff}} T_{2}\left(q^{2}\right)+Y\left(q^{2}\right) \frac{q^{2}}{2 m_{b}\left(M_{B}-m_{K^{*}}\right)} A_{1}\left(q^{2}\right), \\
\mathcal{T}_{3}\left(q^{2}\right)= & C_{7}^{\mathrm{eff}} T_{3}\left(q^{2}\right)+Y\left(q^{2}\right)\left[\frac{M_{B}-m_{K^{*}}}{2 m_{b}} A_{2}\left(q^{2}\right)-\frac{M_{B}+m_{K^{*}}}{2 m_{b}} A_{1}\left(q^{2}\right)\right] \\
& -e_{q}\left(C_{3}+3 C_{4}\right) \frac{8 \pi^{2} M_{B} f_{B} f_{K^{*}} m_{K^{*}}}{N_{C} m_{b}\left(M^{2}-q^{2}\right)} \int d \omega \frac{\phi_{B,-}(\omega)}{\omega-q^{2} / M-i \epsilon} . \tag{2}
\end{align*}
$$

The function $Y\left(q^{2}\right)$ ，which is usually absorbed into $C_{9}^{\text {eff }}\left(q^{2}\right)$ ，arises from the quark loop in Fig．䃼b．The last，＂non－factorizable＂term in $\mathcal{T}_{3}\left(q^{2}\right)$ comes from the annihilation graph in
 are sub－leading in the $1 / m_{b}$ expansion）．It introduces a new non－perturbative ingredient， namely one of the two light－cone distribution amplitudes of the B meson，$\phi_{B, \pm}(\omega)$ ，see ［10 out－going K^{*} meson is large，and the seven independent $B \rightarrow K^{*}$ form factors can be described in terms of only two universal form factors＂阿，which we denote as $\xi_{\perp}\left(q^{2}\right)$ and $\xi_{\|}\left(q^{2}\right)$ for transversely and longitudinally polarized K^{*} mesons，respectively ${ }^{[4 \pi}$ ．

(a)

(b)

(c)

(d)

(e)

Figure 2: Non-factorizable NLO contributions to $\left\langle\gamma^{*} \bar{K}^{*}\right| H_{\text {eff }}|\bar{B}\rangle$. Diagrams that follow from (c) and (e) by symmetry are not shown.

Figure 3: Factorizable NLO corrections to the $B \rightarrow K^{*}$ form factors.

Factorizable next-to-leading order (NLO) form factor corrections are derived from Fig. ${ }_{3}$, after the corresponding infra-red divergent pieces are absorbed into the soft universal form factors ξ_{\perp} and $\xi_{\|}$, see $[\overline{4}]$ for details. The non-factorizable vertex corrections (Fig. $\overline{2} / \bar{c}-$ e), are similar to the NLO calculation for the inclusive $b \rightarrow s \gamma^{*}$ transition, and the result for the two-loop diagrams in Fig. 'i'd+e are taken from Ref. $[\bar{i}]$. For the vertex corrections we chose a renormalization scale $\mu=\mathcal{O}\left(m_{b}\right)$. The non-factorizable hard-scattering corrections in Fig. $\overline{2} \mathrm{a}+\mathrm{b}$ and Fig. ${ }_{\mathrm{I}}^{\mathrm{i} \mathrm{c}} \mathrm{c}$ involve the light-cone distribution amplitudes of both, B and K^{*} mesons. (For $q^{2}=0$ diagrams of this form have already been considered in "īil, but using bound state model wave-functions, rather than light-cone distribution amplitudes.) Since in these class of diagrams the typical quark- and gluon-virtuality is of order $\sqrt{\Lambda_{\mathrm{QCD}} m_{b}}$ we chose a different renormalization scale μ^{\prime} of that order. In principle, we also have to consider NLO order corrections to the annihilation graph in Fig. ìic. However, since this term is suppressed by small Wilson coefficients C_{3} and C_{4} and numerically small already at LO, we have neglected these effects. Notice however, that the annihilation topology is numerically more important for $B \rightarrow \rho \gamma$ decays [$[\overline{8}, \overline{9}]$.

The $B \rightarrow K^{*} \gamma$ decay rate is proportional to the function $\left|\mathcal{T}_{1}(0)\right|^{2}=\left|\mathcal{T}_{2}(0)\right|^{2}$. In order to study the effect of NLO corrections it is convenient to define a generalized exclusive "Wilson" coefficient $\mathcal{C}_{7} \equiv \mathcal{T}_{1}(0) / \xi_{\perp}(0)$. In Fig. 需 we have shown the μ-dependence of $\left|\mathcal{C}_{7}\right|^{2}$ at leading order (LO), including only next-to-leading order vertex corrections (NLO_{1}), and including all next-to-leading order corrections (NLO). As expected, the NLO_{1} vertex corrections cancel the renormalization-scale dependence of the LO result to a great extent. (The hard-scattering corrections, arising at order α_{s} reintroduce a mild scale-dependence.) Most importantly, we observe that the NLO corrections significantly increase the theoretical prediction for $\left|\mathcal{C}_{7}\right|^{2}$. Numerically, we have $\left|\mathcal{C}_{7}\right|_{\mathrm{NLO}}^{2} \simeq 1.78 \cdot\left|\mathcal{C}_{7}\right|_{\mathrm{LO}}^{2}$. From this we predict the
branching ratio as

$$
\begin{equation*}
\operatorname{Br}\left(\bar{B} \rightarrow \bar{K}^{*} \gamma\right)=\left(7.9_{-1.6}^{+1.8}\right) \cdot 10^{-5}\left(\frac{\tau_{B}}{1.6 \mathrm{ps}}\right)\left(\frac{m_{b, \mathrm{PS}}}{4.6 \mathrm{GeV}}\right)^{2}\left(\frac{\xi_{\perp}(0)}{0.35}\right)^{2} \tag{3}
\end{equation*}
$$

Comparing with the current experimental averages $[1010] \operatorname{Br}\left(\bar{B}^{0} \rightarrow \bar{K}^{* 0} \gamma\right)_{\exp }=(4.54 \pm 0.37)$. $10^{-5}, \operatorname{Br}\left(B^{-} \rightarrow \bar{K}^{*-} \gamma\right)_{\exp }=(3.81 \pm 0.68) \cdot 10^{-5}$, and using the value $\xi_{\perp}(0)=0.35$ from QCD sum rules $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ the data by nearly a factor of two. (An equivalent analysis with similar conclusions can be found in Ref. [$[\overline{2}]$. $]$.)

Figure 4: $\left|\mathcal{C}_{7}\right|^{2}$ as a function of the renormalization scale μ, see text.

Possible explanations for this discrepancy are: i) new physics contributions (this is rather unlikely because of the good agreement between NLO theory and experiment for the inclusive counterpart, $B \rightarrow X_{s} \gamma$), ii) sizeable $1 / m_{b}$ powercorrections ("chirally enhanced" corrections play a role for decays into lightjpseudoscalars [in [12 ; in our case, however, we lexpect a less dramatic effect), iii) an insufficient understanding of the $B \rightarrow K^{*}$ form factors a fit to the experimental data on the basis of our formalism yields a somewhat smaller value, $\left.\xi_{\perp}(0)=0.24 \pm 0.06\right)$.
A quantity that is less sensitive to the precise value of $\xi_{\perp}\left(q^{2}\right)$ is provided by the $B \rightarrow K^{*} \ell^{+} \ell^{-}$forward-backward asymmetry $\mathcal{A}_{\mathrm{FB}}$. At LO the position of the asymmetry zero q_{0}^{2} is determined by the implicit relation

$$
\begin{equation*}
C_{9}+\operatorname{Re}\left(Y\left(q_{0}^{2}\right)\right)=-\frac{2 M_{B} m_{b}}{q_{0}^{2}} C_{7}^{\mathrm{eff}} \tag{4}
\end{equation*}
$$

and does not depend on form factors at all $[\overline{1} \overline{1} \overline{3}]$. As illustrated in Fig. ' ${ }^{5} \overline{1} 1$ NLO corrections shift the position of the asymmetry zero from $q_{0}^{2}=3.4_{-0.5}^{+0.6} \mathrm{GeV}^{2}$ at LO to $q_{0}^{2}=4.39_{-0.35}^{+0.38} \mathrm{GeV}^{2}$. (A slightly different value $q_{0}^{2}=3.94 \mathrm{GeV}^{2}$ is found if one takes the complete form factors from QCD sum rules $\left[\begin{array}{l}{[1]} \\ 1\end{array}\right]$, instead of ξ_{\perp} and the factorizable NLO corrections from [itid). In any case, a measurement of the forward-backward asymmetry zero provide a clean test of the Wilson-coefficient C_{9} in the standard model with a rather small theoretical uncertainty of about 10%.

In summary, we have shown that a systematic improvement of the theoretical description of exclusive radiative B meson decays is possible. This is because in the heavy quark limit decay amplitudes factorize into perturbatively calculable hard-scattering kernels and universal soft form factors or light-cone distribution amplitudes, respectively. The next-toleading order corrections increase the branching ratio for the decay $B \rightarrow K^{*} \gamma$ by almost a factor of two (which is at variance with the current experimental data if "standard" values for the soft form factors are used). They also shift the position of the forward-backward asymmetry in the decay $B \rightarrow K^{*} \ell^{+} \ell^{-}$towards $q_{0}^{2}=4.2 \pm 0.6 \mathrm{GeV}^{2}$ in the standard model. In this case the precision of the prediction is sufficient to test the Wilson coefficient C_{9} with only 10% theoretical uncertainty.

Figure 5: The FB asymmetry as a function of q^{2} (left). The Wilson-coefficient C_{9} as a function of the FB asymmetry zero (right). The error band refers to a variation of all input parameters and changing the renormalization scale between $m_{b} / 2$ and $2 m_{b}$. The dashed line is obtained from using the complete form factors from [1] 1

References

[1] M. Beneke, T. Feldmann, and D. Seidel, hep-ph/0106067. (to appear in Nucl. Phys. B).
[2] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125-1144.
[3] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, Phys. Rev. Lett. 83 (1999) 1914, hep-ph/9905312]; Nucl. Phys. B591 (2000) 313-418, , hep-ph/0006124.
[4] M. Beneke and T. Feldmann, Nucl. Phys. B592 (2000) 3-34, hep-ph/0008255]; T. Feldmann, Nucl. Phys. Proc. Suppl. 93 (2001) 99-102, [hep-ph/0
[5] J. Charles, A. L. Yaouanc, L. Oliver, O. Pène, and J. C. Raynal, Phys. Rev. D60 (1999) 014001, 角ep-ph/9812358.
[6] H. H. Asatryan, H. M. Asatrian, C. Greub, and M. Walker, Phys. Lett. B507 (2001) 162-172, [hep-ph $\left./ 0103080^{2}\right]$.
[7] H. H. Asatryan, H. M. Asatrian, and D. Wyler, Phys. Lett. B470 (1999) 223, [hep-ph $\left.\overline{-1} 9 \overline{9} 0 \overline{5} 4122^{2}\right]$.
[8] A. Ali and V. M. Braun, Phys. Lett. B359 (1995) 223-235, hhep-ph/9506248i]; B. Grinstein and D. Pirjol, Phys. Rev. D62 (2000) 093002, hep-ph/0002216; M. Beyer, D. Melikhov, N. Nikitin, and B. Stech, 'hep-ph/0106203.
[9] S. W. Bosch and G. Buchalla, hep-ph/010
[10] CLEO Collaboration, T. E. Coan et. al., Phys. Rev. Lett. 84 (2000) 5283-5287, [hep-ex/9912057); V. Brigljevic [BaBar Collaboration], at 36th Rencontres de Moriond, March 2001, Les Arcs, France; G. Taylor [Belle Collaboration], at 36th Rencontres de Moriond, March 2001, Les Arcs, France.
[11] P. Ball and V. M. Braun, Phys. Rev. D58 (1998) 094016, [hep-ph/gobi22].
[12] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, hep-ph/0104110.
[13] G. Burdman, Phys. Rev. D57 (1998) 4254-4257, 解---ph/9710550];
A. Ali, P. Ball, L. T. Handoko, and G. Hiller, Phys. Rev. D61 (2000) 074024, $[h e p-p h / \overline{9} \overline{1} 0221]$.

[^0]: *Speaker.
 ${ }^{\dagger}$ Based on work together with M. Beneke and D. Seidel $|\overline{11}|$.

