

Observation of Radiative B Meson Decays into Higher Kaonic Resonances (Penguin Mediated B Decays at Belle)

Shohei Nishida* (Belle Collaboration)

Department of Physics, Kyoto University, Kitashirakawa-Oiwakecho, Kyoto, Japan E-mail: nishida@scphys.kyoto-u.ac.jp

ABSTRACT: We have studied radiative B meson decays into higher kaonic resonances decaying into a two-body or three-body final state, using a data sample of 21.3 fb⁻¹ recorded at the $\Upsilon(4S)$ resonance with the Belle detector at KEKB. For the two-body final state, we extract the $B \to K_2^*(1430)\gamma$ component from an analysis of the helicity angle distribution, and obtain $\mathcal{B}(B^0 \to K_2^*(1430)^0\gamma) = (1.26 \pm 0.66 \pm 0.10) \times 10^{-5}$. For the three-body final state, we observe a $B \to K\pi\pi\gamma$ signal that is consistent with a mixture of $B \to K^*\pi\gamma$ and $B \to K\rho\gamma$ for the first time.

1. Introduction

Radiative B meson decay through the $b \to s\gamma$ process has been one of the most sensitive probes of new physics beyond the Standard Model (SM). The inclusive picture of the $b \to s\gamma$ process is well established; however, our knowledge of the exclusive final states in radiative B meson decays is rather limited. A relativistic form-factor model calculation [1] predicts that more than 20% of the $b \to s\gamma$ process should hadronize as kaonic resonances (K_X) . CLEO has already reported an indication of the $B \to K_2^*(1430)\gamma$ signal [2]. Precision measurement of the inclusive $b \to s\gamma$ branching fraction will require detailed knowledge of such resonances, for example to model the decay processes into multi-particle final states. In this analysis, we study radiative B meson decay processes into higher kaonic resonances, which subsequently decay into two-body or three-body final states.

We have analyzed a data sample that contains $22.8 \times 10^6 \ B\bar{B}$ events. The data sample corresponds to an integrated luminosity of $21.3 \ \text{fb}^{-1}$ collected at the $\Upsilon(4S)$ resonance with the Belle detector [3] at the KEKB e^+e^- collider [4].

^{*}Speaker.

2. Analysis of $B \to K_2^*(1430)\gamma$

In the $B \to K_2^*(1430)\gamma$ analysis, we reconstruct $K_2^*(1430)$ from $K^+\pi^-$ (charge conjugate modes are implicitly included) and require the $K\pi$ invariant mass to be within $\pm 125~{\rm MeV}/c^2$ of the nominal $K_2^*(1430)$ value. Then, we combine the $K_2^*(1430)$ candidate with a high energy (1.8 to 3.4 GeV in the $\Upsilon(4S)$ rest frame) photon (γ) candidate inside the acceptance of the barrel calorimeter $(33^\circ < \theta_\gamma < 128^\circ)$ to reconstruct a B meson candidate, and form two independent variables: the beam constrained mass $M_{\rm bc} \equiv \sqrt{(E_{\rm beam})^2 - |\vec{p}_{K_X} + \vec{p}_{\gamma}|^2}$, and the energy difference $\Delta E \equiv E_{K_X} + E_{\gamma} - E_{\rm beam}$. We apply a cut of $-100~{\rm MeV} < \Delta E < 75~{\rm MeV}$.

To suppress backgrounds from continuum light quark-pair $(q\bar{q})$ production, we apply a likelihood ratio cut where the likelihood ratio is calculated from the B meson flight direction and an event shape variable which we call SFW [5]. We find that the contribution of the background from other B meson decays is negligible from Monte Carlo (MC) study. Crossfeed from other $b \to s\gamma$ final states is estimated using an inclusive $b \to s\gamma$ MC sample, and subtracted from the signal yield.

The $M_{\rm bc}$ distribution for $B^0 \to K_2^*(1430)^0 \gamma$ is shown in Fig. 1. By the fit to the $M_{\rm bc}$ distribution using a sum of a Gaussian function and a threshold-type function (ARGUS function [6]), we obtain $29.1 \pm 6.7^{+2.4}_{-1.9}$ events, of which the contribution from other $b \to s\gamma$ decays is estimated to be 0.4 ± 0.3 events. The event selection efficiency is determined to be $(6.99 \pm 0.55)\%$ including the sub-decay branching fractions from a MC sample that is calibrated with high statistics control data samples.

In order to distinguish the $B \to K_2^*(1430)\gamma$ signal from $B \to K^*(1410)\gamma$ and non-resonant decays, we examine the helic-

Figure 1: The $M_{\rm bc}$ distributions for $B^0 \to K_2^*(1430)^0\gamma$. The solid line is the fitting result. The background component is shown as the dashed line.

ity angle distribution for the signal candidates. All three modes have different helicity distributions: $\cos^2\theta_{\rm hel} - \cos^4\theta_{\rm hel}$ for $K_2^*(1430)$, $1 - \cos^2\theta_{\rm hel}$ for $K^*(1410)$ and uniform for non-resonant decay. We divide $\cos\theta_{\rm hel}$ into 5 bins, and extract the yield from fits to the $M_{\rm bc}$ distribution for each bin (Fig. 2). This distribution clearly favors $B \to K_2^*(1430)\gamma$. We fit the $\cos\theta_{\rm hel}$ distribution and obtain 20.1 ± 10.5 events for the $B \to K_2^*(1430)\gamma$ component. After subtracting other $b \to s\gamma$ contributions, this leads to a $B^0 \to K_2^*(1430)^0\gamma$ branching fraction of

$$\mathcal{B}(B^0 \to K_2^*(1430)^0 \gamma) = (1.26 \pm 0.66 \pm 0.10) \times 10^{-5}.$$

The background subtracted $K\pi$ invariant mass distribution for $B \to K\pi\gamma$ is obtained by a similar method. In Fig. 3. we see a clear enhancement around 1.4 GeV/ c^2 , which supports the conclusion that the $B \to K_2^*(1430)\gamma$ contribution dominates.

Figure 3: The background subtracted $K\pi$ invariant mass distribution.

3. Analysis of $B \to K_X \gamma \to K \pi \pi \gamma$

The selection criteria used to reconstruct the $B \to K\pi\pi\gamma$ decay are similar to those used in the analysis of $B \to K_2^*(1430)\gamma$. The K_X candidate is reconstructed from $K^+\pi^-\pi^+$, and required to have a mass between 1.0 GeV/ c^2 and 2.0 GeV/ c^2 . The three charged tracks are required to form a vertex.

We select $B \to K_X \gamma \to K^* \pi \gamma$ candidates $(K^*$ denotes $K^*(892)$ for simplicity) by requiring the invariant mass of $K^+\pi^-$ to be within $\pm 75~{\rm MeV}/c^2$ of the nominal K^* mass. We obtain $46.4 \pm 7.3^{+1.6}_{-2.7}$ events from the $M_{\rm bc}$ distribution (Fig. 4). After subtracting $B^+ \to K^+\rho^0\gamma$ or non-resonant contribution using $M_{K\pi}$ sideband and other $b \to s\gamma$ contribution using MC, we obtain a $B^+ \to K^{*0}\pi^+\gamma$ yield of $39.7 \pm 7.4^{+1.7}_{-2.6}$ events.

Figure 4: The $M_{\rm bc}$ distribution for $B \to K^*\pi\gamma$ candidates.

Figure 5: The background subtracted $K\pi\pi$ invariant mass distribution for the $B\to K^*\pi\gamma$ analysis.

From the K_X invariant mass (M_{K_X}) distribution (Fig. 5), we observe a broad structure

below 2.0 GeV/c^2 that can be explained, for example, as a sum of two known resonances around 1.4 GeV/c^2 and 1.7 GeV/c^2 , but cannot be explained by a single known resonance or phase space decay. We observe no excess above 2.0 GeV/c^2 , indicating that the $M_{K_X} < 2.0 \text{ GeV}/c^2$ cut does not introduce a significant inefficiency.

To estimate the efficiency of $B \to K^*\pi\gamma$, we analyze $B \to K_1(1400)\gamma$ and $B \to K^*(1680)\gamma$ MC samples, use the mean of the efficiencies as the central value, and assign the difference to the systematic error. As a result, the efficiency becomes $(3.13 \pm 0.47)\%$ including the other systematic errors. We determine the $B \to K^*\pi\gamma$ branching fraction,

$$\mathcal{B}(B \to K^* \pi \gamma; M_{K^* \pi} < 2.0 \text{ GeV}/c^2) = (5.6 \pm 1.1 \pm 0.9) \times 10^{-5}.$$

There are four known resonances, $K_1(1270)$, $K_1(1400)$, $K^*(1410)$ and $K_2^*(1430)$, that can contribute to the signal around $M_{K_X}=1.4~{\rm GeV}/c^2$. In the region of 1.2 ${\rm GeV}/c^2 < M_{K_X} < 1.6~{\rm GeV}/c^2$, we obtain $22.9 \pm 5.1^{+1.0}_{-1.7}$ events from the $M_{\rm bc}$ distribution, where the $K_2^*(1430)$ contribution is estimated to be 2.6 ± 1.4 events from our branching fraction measurement. We interpret the signal yield as an upper limit on the weighted sum of the three resonances: $\frac{1}{2}\mathcal{B}(B \to K_1(1270)\gamma) + \mathcal{B}(B \to K_1(1400)\gamma) + \mathcal{B}(B \to K^*(1410)\gamma) < 5.1 \times 10^{-5}$ (90% C.L.).

Next, we select $B \to K_X \gamma \to K \rho \gamma$ candidates by requiring the invariant mass of the $\pi^+\pi^-$ combination to be within $\pm 250~{\rm MeV}/c^2$ of the nominal ρ mass. To veto $B \to K_X \gamma \to K^*\pi\gamma$ events, we reject a candidate if the invariant $K^+\pi^-$ mass is within $\pm 125~{\rm MeV}/c^2$ of the nominal K^* mass. The $M_{\rm bc}$ distribution and the K_X invariant mass distribution are shown in Figs. 6 and 7, respectively. From the $M_{\rm bc}$ distribution, we obtain a signal yield of $24.5 \pm 6.4^{+1.2}_{-2.3}$ events. We subtract the contribution of 2.3 ± 1.2 events from other $b \to s \gamma$ decays.

The M_{K_X} spectrum of these events (Fig. 7) shows a large peak around 1.7 GeV/ c^2 . Since there are quite a few resonances around 1.7 GeV/ c^2 , a detailed analysis will be required to disentangle the resonant substructure. The reconstruction efficiency for $B \to K\rho\gamma$, which is M_{K_X} dependent, is determined to be $(1.51 \pm 0.25)\%$ by assuming a mixture of $K_1(1270)$ and $K^*(1680)$ with a ratio from the M_{K_X} fit result. So far we find no signal outside the ρ mass window; neglecting the non-resonant $K\pi\pi\gamma$ contribution, we determine the $B \to K\rho\gamma$ branching fraction,

$$\mathcal{B}(B \to K \rho \gamma; M_{K\rho} < 2.0 \text{ GeV}/c^2) = (6.5 \pm 1.7 ^{+1.1}_{-1.2}) \times 10^{-5}.$$

The $K\rho\gamma$ final state in the mass range around 1.3 GeV/ c^2 is effective for the search of $B \to K_1(1270)\gamma$. We find 4 candidates in the signal box with a background expectation of 1.19 events, when we require $|M_{K_X} - M_{K_1(1270)}| < 0.1 \text{ GeV}/c^2$, and obtain an upper limit of $\mathcal{B}(B \to K_1(1270)\gamma) < 9.6 \times 10^{-5}$ (90% C.L.).

4. Conclusion

We have searched for radiative B meson decays into kaonic resonances that decay into a two-body or three-body final states together with a high energy photon. We observe sizable

Figure 6: The $M_{\rm bc}$ distribution for $B \to K\rho\gamma$ candidates.

Figure 7: The $K\pi\pi$ invariant mass distribution in the $B \to K\rho\gamma$ analysis. Background is subtracted in each bin.

signals in $B \to K_2^*(1430)\gamma$, $B \to K^*\pi\gamma$ and $B \to K\rho\gamma$ decays and determine the branching fractions for these channels. The measured branching fractions respectively correspond to about 4%, 17% and 19% of the total $b \to s\gamma$ branching fraction [5,8–10]. Adding 15% from the $K^*(892)\gamma$ branching fractions, these decay modes sum up to about half of the entire $b \to s\gamma$ process.

For the $K\pi\gamma$ final state, the $K_2^*(1430)\gamma$ component is separated from a possible $K^*(1410)\gamma$ or non-resonant contribution using a helicity angle analysis.

For the three-body final states, we observe $B \to K^*\pi\gamma$ and $B \to K\rho\gamma$ signals separately for the first time; however, the possible contribution of many kaonic resonances prevents us from further identification of such resonances with the current statistics. We find no significant signal for $B \to K_1(1270)\gamma$ decay in the $K\rho\gamma$ final state.

References

- [1] S. Veseli and M.G. Olsson, Phys. Lett. B **367**, 309 (1996).
- [2] CLEO Collaboration, T.E.Coan et al., Phys. Rev. Let. 84, 5283 (2000).
- [3] Belle Collaboration, K. Abe *et al.*, KEK Progress Report 2000-4 (2000), to be published in Nucl. Inst. and Meth. A.
- [4] KEKB B Factory Design Report, KEK Report 95-7 (1995), unpublished; Y. Funakoshi *et al.*, Proc. 2000 European Particle Accelerator Conference, Vienna (2000).
- [5] Belle Collaboration, K.Abe *et al.*, Phys. Lett. B **511**, 151 (2001).
- [6] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 241, 278 (1990).
- [7] Particle Data Group, D.E. Groom et al., Eur. Phys. J. C15, 1 (2000).
- [8] K.Chetyrkin, M.Misiak, M.Münz, Phys. Lett. B 400, 206 (1997); Erratum ibid. B 425, 414 (1998)
- [9] CLEO Collaboration, M.Alam et al., Phys. Rev. Lett. **74**, 2885 (1995).
- [10] ALEPH Collaboration, R.Barate et al., Phys. Lett. B 429, 196 (1998)