

Conversion decays of ϕ (1020) decays into $\pi^0 e^+ e^-$, η (550) $e^+ e^-$ and η (550) into $e^+ e^- \gamma$ from SND detector at VEPP-2M

T.V. Dimova*, M.N.Achasov, K.I.Beloborodov, A.V.Berdyugin, A.V.Bozhenok, A.G.Bogdanchikov, A.D.Bukin, D.A.Bukin, S.V.Burdin, A.A.Drozdetsky, V.P.Druzhinin, V.B.Golubev, V.N.Ivanchenko, A.A.Korol, S.V.Koshuba, A.P.Lysenko, A.A.Mamutkin, E.V.Pakhtusova, A.A.Salnikov, S.I.Serednyakov, V.V.Shary, A.G.Skripkin, Yu.M.Shatunov, Z.K.Silagadze, A.A.Valishev, A.V.Vasiljev

Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia Novosibirsk State University, Novosibirsk, 630090, Russia E-mail: baiert@inp.nsk.su

ABSTRACT: The conversion decays $\phi \to \eta e^+ e^-$, $\phi \to \pi^0 e^+ e^-$ and $\eta \to \gamma e^+ e^-$ were studied by the SND detector using ϕ -meson production in $e^+ e^-$ -annihilation at VEPP-2M collider. The $e^+ e^-$ -pair mass spectra and transition form factors for $\phi \to \eta e^+ e^-$ and $\eta \to \gamma e^+ e^-$ were also studied.

1. Introduction

Conversion decays of vector and pseudoscalar mesons are closely related to corresponding radiative decays. But in conversion decays a radiated photon is virtual and its squared mass q^2 (equal to invariant mass of lepton pair $M_{l^+l^-}^2$) is not equal to zero. So studying lepton pair invariant mass spectrum it is possible to learn more about mesons structure and underlying quark dynamics and to measure a so-called transition form factor. In general case of meson V decay into meson P this spectrum is described by the following formula[1]:

$$\frac{d}{dq^2}\frac{B(V\to Pe^+e^-)}{B(V\to P\gamma)}=$$

$$\frac{\alpha}{3\pi} \frac{|F_{VP}(q^2)|^2}{q^2} \cdot \sqrt{1 - \frac{4m^2}{q^2}} \left(1 + \frac{2m^2}{q^2}\right) \cdot \left[\left(1 + \frac{q^2}{m_V^2 - m_P^2}\right)^2 - \frac{4m_V^2 q^2}{(m_V^2 - m_P^2)^2} \right]^{3/2}, \quad (1.1)$$

^{*}Speaker.

where F_{VP} - transition form factor, m - electron mass, m_V, m_P - masses of V and P mesons respectively. In one-pole approximation transition form factor can be written in the following way:

$$F_{VP} = \frac{1}{1 - q^2/\Lambda^2},\tag{1.2}$$

were $b^2=1/\Lambda^2$ is a transition form factor slope, which is usually measured in experiments. In this work three different conversion decays were studied: $\phi \to \eta e^+ e^-$, $\phi \to \pi^0 e^+ e^-$, $\eta \to \gamma e^+ e^-$. As a source of η mesons the decay $\phi \to \eta \gamma$ was used. The available experimental data about these decays before the experiments at VEPP-2M with SND and CMD2 detectors are shown in Table 1.

Decay	experimental	PDG
	status	[8]
$\phi \to \eta e^+ e^-$	ND (5 events)	$(1.3^{+0.8}_{-0.6}) \cdot 10^{-4}$
	(BINP, Novosibirsk[2])	
$\eta \to e^+ e^- \gamma$	optical spark chamber	$(4.9 \pm 1.1) \cdot 10^{-3}$
	(Rutherford Laboratory)	
	transition form factor $study[3]$	$b_{\eta} = (-0.7 \pm 1.5) \text{ GeV}^{-2}$
$\phi \to \pi^0 e^+ e^-$	not seen	$< 1.2 \cdot 10^{-4}$

Table 1: Experimental status of conversion decays before experiments at VEPP-2M.

2. Detector and experiment

The experiments with Spherical Neutral Detector (SND) were held at VEPP-2M e^+e^- -collider from 1995 to 2000. SND [4] has the following parts: tracking system consisting of two drift chambers, three layers NaI(Tl) crystal calorimeter and a muon system. Angular resolution of the tracking system is $\sigma_{\varphi}=0.5^{\circ}, \sigma_{\vartheta}=2.5^{\circ}$. The energy and angular resolutions of the calorimeter for photons with energy E are $\sigma_{E}/E=\frac{4.2\%}{\sqrt[4]{E(GeV)}}$ and $\sigma_{\varphi}=\frac{0.82^{\circ}}{\sqrt{E(GeV)}}\oplus 0.63^{\circ}$.

The analysis was based on full statistics accumulated near ϕ -meson resonance which is equal to 8.8 pb⁻¹ at the energy range 1016 MeV < \sqrt{s} <1024 MeV and corresponds to $2.\cdot 10^7$ of ϕ mesons decays.

3. Data analysis

3.1 Branching ratios measurement

Selection of events was performed in two steps. At the first step common for all processes criteria were used:

- number of charged particles is $N_{cp} = 1$; number of photons is $N_{np} = 2$;
- the origin of charged track is located at interaction point;
- polar angle of all particles is limited $36^{\circ} < \theta < 144^{\circ}$;

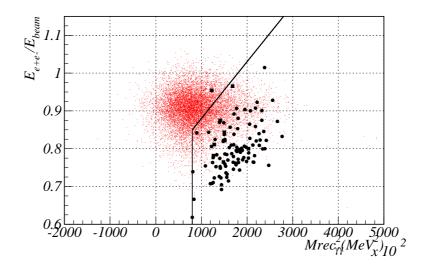


Figure 1: Graphical cut used for $e^+e^- \to \pi^+\pi^-\pi^0$ background suppression in $\phi \to \pi^0e^+e^-$ analysis

- total energy deposition in the calorimeter is $E_{tot}/2E_0 > 0.8$;
- total normalized momentum in an event is $P_{tot}/E_{tot} < 0.15$;
- $\chi^2 < 15$, where χ^2 is a parameters of the kinematic fit assuming energy-momentum conservation.

At the second step the analysis of $\phi \to \eta e^+ e^-$ and $\eta \to e^+ e^- \gamma$ decays was performed separately from that of $\phi \to \pi^0 e^+ e^-$. For the first two processes the following additional selection criteria were used:

- acollinearity angle in R- ϕ plane $|\Delta \phi_{e\gamma}| = |180^{\circ} |\phi_e \phi_{\gamma}|| > 5^{\circ};$
- minimum photon energy $E_{\gamma} > 150 MeV$;
- invariant mass of two photons $m_{\gamma\gamma}$ is outside 110÷170 MeV interval.

For the last decay the following additional criteria were used:

- minimum photon energy $E_{\gamma} > 50 MeV$;
- graphical cut on 2 dimensional distribution on recoil mass of two photons $M_{\gamma\gamma}^{rec}$ vs. e^+e^- -pair energy was used (fig.1).

For thus selected events the following invariant mass distributions were constructed (fig.2): invariant mass of two photons for $\phi \to \eta e^+ e^-$ and $\phi \to \pi^0 e^+ e^-$ decays and invariant mass of $e^+ e^- \gamma$ system for $\eta \to e^+ e^- \gamma$. Number of events for each process were obtained via approximation of these spectra by a sum of Gaussian and a polynomial.

Numbers of background events of corresponding radiative decays with conversion of the photon on the material before drift chamber were determined by simulation. For the process $\phi \to \pi^0 e^+ e^-$ the tails of ρ and ω resonances were taken into account: correction coefficient was calculated from experimental data on $e^+ e^- \to \pi^0 \gamma$ cross section. The systematic errors were estimated to be 10% for $\phi \to \eta e^+ e^-$, 14% for $\eta \to \gamma e^+ e^-$ and 25% for $\phi \to \pi^0 e^+ e^-$. Final results for branching ratios are shown in Table 2.

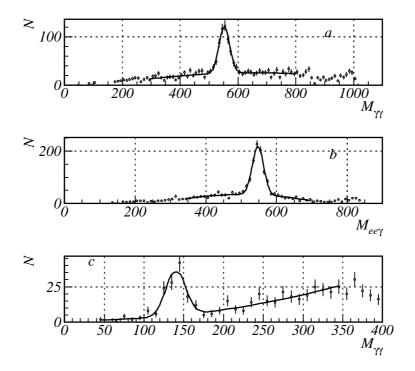


Figure 2: Invariant mass spectra: a – $M_{\gamma\gamma}$ for $\phi \to \eta e^+e^-$, b – $M_{e^+e^-\gamma}$ for $\eta \to e^+e^-\gamma$, c – $M_{\gamma\gamma}$ for $\phi \to \pi^0 e^+e^-$

	$\phi \to \eta e^+ e^-$	$\eta \to e^+ e^- \gamma$	$\phi \to \pi^0 e^+ e^-$
	$(\cdot 10^{-4})$	$(\cdot 10^{-3})$	$(\cdot 10^{-5})$
SND	1.19 ± 0.22	5.15 ± 0.96	1.05 ± 0.37
CMD-2	$1.17 \pm 0.12[5]$	$7.10 \pm 0.79[5]$	1.22 ± 0.40 [6]
SND&CMD-2	1.18 ± 0.11	6.31 ± 0.61	1.13 ± 0.27
Theory[1, 7]	1.10 ± 0.1	6.5-6.8	1.3–1.6
$\overline{\mathrm{PDG}(2000)[8]}$	$1.3^{+0.8}_{-0.6}$	4.9 ± 1.1	$< 1.2 \cdot 10^{-4}$

Table 2: Experimental results for branching ratios

3.2 Transition form factors measurement

Study of electromagnetic transition form factors was performed for the processes $\phi \to \eta e^+e^-$ and $\eta \to e^+e^-\gamma$. In this analysis the selection criteria were similar to those described in 3.1. The only difference was that two charged tracks were required. For selected events the final criteria were used: for $\phi \to \eta e^+e^-$ decay invariant mass of two photons was required to be within 500÷600MeV interval and invariant mass of $e^+e^-\gamma$ system closest to η -meson was required to be ouside 500÷600MeV interval. For $\eta \to e^+e^-\gamma$ decay — opposite criteria were used. For thus selected events the e^+e^- invariant mass M_{ee} spectra was plotted. The background from QED process $e^+e^- \to e^+e^-\gamma\gamma$ was substracted using simulation. From these spectra using formulas from [1] the transition form factors were extracted (fig.3). The distributions were fitted by function (1.2), obtained form factors slopes are shown at Table 3.

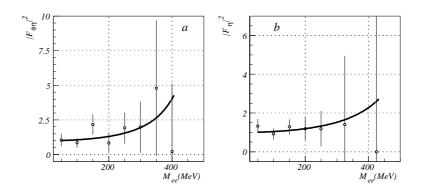


Figure 3: Transition form factors for the processes $\phi \to \eta e^+ e^-$ (a) and $\eta \to e^+ e^- \gamma$ (b); points - experimental data, solid line - one-pole approximation fit.

	$\phi \to \eta e^+ e^-$	$\eta \to e^+e^-\gamma$	$\phi \rightarrow \pi^0 e^+ e^-$
	$b_{\phi\eta}, { m GeV^{-2}}$	$b_{\eta}, { m GeV^{-2}}$	$b_{\phi\pi}, { m GeV^{-2}}$
SND	3.8 ± 1.8	1.6 ± 2.0	_
Theory (VDM)[1]	1.0	1.8	
Previous			
measurement[3]		-0.7 ± 1.5	_

Table 3: Experimental results for transition form factors slopes

4. Conclusions

As a result of experiments with SND detector at VEPP-2M e^+e^- -collider the knowledge about conversion decays of ϕ and η mesons was significantly improved. The branching ratios were measured with the accuracy $\sim 20\%$ – for $\phi \to \eta e^+e^-$ and $\eta \to e^+e^-\gamma$ and 35% – for $\phi \to \pi^0 e^+e^-$. The measured values are in good agreement with theoretical predictions, recent CMD-2 results and previous measurements. The measured transition form factor slopes are consistent with VDM predictions.

References

- [1] L.G.Landsberg, Phys. Rept. **128** (1985) 301
- [2] S.I.Dolinsky et al., Phys. Rept. **202** (1991) 99
- [3] M.R.Jane et al., Phys. Lett. **B** 59 (1975) 103
- [4] M.N.Achasov et al., Nucl. Instrum. Meth. A449 (2000) 125
- [5] R.R.Akhmetshin et al., Phys. Lett. $\bf B$ $\bf 501$ (2001) 191
- [6] R.R.Akhmetshin et al., Phys. Lett. B 503 (2001) 237
- [7] A.Faessler et al., Phys. Rev. C 61 (2000) 035206
- [8] D.E.Groom et al., Eur. Phys. J. C 15 (2000) 1