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Abstract: With an alternative perturbative series, obtained from expansion near a

renormalization group “self-consistent mass” solution, in asymptotically free models, the

usual factorial behaviour at large expansion orders of certain physical quantities can be

improved. This leads to (Borel) convergence of the alternative expansion, at least for

particular values, mv <∼ 0, of the new perturbative (mass) parameter. We argue that
non-ambiguous estimates of quantities relevant to dynamical (chiral) symmetry breaking

in QCD, can be obtained from a direct resummation of this expansion.

1. Introduction

In this talk we briefly review a construction[1], defining an alternative series expansion for

physical Green functions in asymptotically free theories (AFT). The basic idea is to exploit

a physically motivated renormalization group (RG) “self-consistent mass” solution, which

automatically transforms the ordinary expansion (in a coupling g) of on-shell Green func-

tions, depending explicitly on a mass m, in the form of (mass) power expansions in (m̂/Λ)α

[m̂ is the renormalization scale-invariant mass, Λ the basic RG scale and α is determined

by lowest orders RG coefficients]. This resums RG dependence to all orders (at least in

specific schemes), and is non-perturbative in the sense that it automatically provides[1, 2]

a well-defined (analytic) bridge between the usual perturbative regime (corresponding to

m̂� Λ) and the strongly coupled non-perturbative, massless (chiral) limit (corresponding
to m̂� Λ). Unfortunately, this is a pure RG result, and its extrapolation to m̂→ 0 turns
out to be badly afflicted when taking into account the non-RG perturbative large order be-

haviour, exhibiting same signs (thus non Borel summable) factorially divergent coefficients

(the infrared renormalon[3] singularities), implying intrinsic ambiguities of O(Λ). However,
our alternative expansion has the property that it can be smoothly extrapolated down to

negative values of the relevant mass expansion parameter, inducing a sign alternation of the

coefficients, so that the series is found to be Borel summable[2] near the chirally symmetric,

massless limit, which also corresponds to the strongly coupled regime (physical quantities
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do not depend on the absolute sign of this mass parameter). In addition, the structure of

this mass power expansion is such that its convergence properties can be further improved,

by combining it with another modification of perturbation theory, known as delta-expansion

(DE) or “variationally improved perturbation” (VIP)[4]. The latter is a reorganization of

the interaction Lagrangian, involving an arbitrary adjustable parameter fixed by specific

(generally optimization) prescriptions. In D = 1 (oscillator) models, DE-VIP is equivalent

to rescaling the adjustable mass with perturbative order[5], which essentially suppresses

the factorial asymptotic behaviour of ordinary perturbative coefficients[6], resulting in a

convergent series[7]. Our construction may be considered a field theory generalization of

those convergence properties. Resumming this mass power series gives estimates of e.g. the

mass gap in D=2 models (like typically in the O(N) Gross-Neveu (GN) model[8], where

it can be compared to exact results[9]), with also possible application to more involved

theories like QCD, where the non-perturbative chiral symmetry breaking is exhibited by

order parameters, accessible from a similar construction[1] in the chiral limit.

2. Alternative mass expansion and mass gap

In a renormalization scheme where non-universal (scheme dependent) RG coefficients of

n ≥ 3-loops are set to zero, the pole mass reads[1]:

MP (m̂) = 2−C m̂ F−A[C + F ]−B
∞∑
n=0

dn (2b0F )
−n , (2.1)

F (
m̂

Λ
) ≡ ln[m̂

Λ
]−A lnF − (B − C) ln[C + F ], (2.2)

with Λ and m̂ the basic scale and RG invariant mass, and A,B,C involve one and two-loop

RG coefficients (see e.g. ref. [2] for our RG conventions):

A =
γ1
2b1
, B =

γ0
2b0
−A, C = b1

2b20
. (2.3)

In (2.1) the coefficients dn essentially include non-RG perturbative contributions from the

n-loop graphs. At first RG order (b1 = γ1 = 0), Eq. (2.2) takes a simpler form

F (m̂/Λ) ≡ ln(m̂/Λ)−A0 lnF = A0W [A−10 (m̂/Λ)1/A0 ] (2.4)

where A0 =
γ0
2b0
and the Lambert[10] function W [x] ≡ lnx − lnW , is plotted in Fig 1.

Eq. (2.4) has the remarkable property: F ' (m̂/Λ)1/A0 for m̂ → 0, in contrast with the
ordinary logarithm, however asymptotic to F (m̂/Λ) ∼ (2b0g)−1 for m̂ � Λ (Fig. 1). At
second RG order, F (m̂) in Eq. (2.2) has properties similar to Eq (2.4): for any m̂ > 0,

it defines a bridge between the usual short distance perturbative m̂ � Λ (Log) regime,
and the non-perturbative m̂ <∼ Λ regime, where F has a power expansion. Accordingly,
if neglecting (only momentarily) the non-RG dn terms, the pure RG mass M

RG(m̂) in

Eq. (2.1) reads

MRG(m̂) = 2−C eF [C + F ]−C . (2.5)
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This gives a mass gap: M = (2C)−CΛ, for m̂ → 0, as easily obtained expanding (2.2) for
m̂→ 0 in (2.5), equivalently F → 0:
M(m̂→ 0) = (2C)−Cm̂ [(m̂/Λ)1/A + · · ·]−A = (2C)−C Λ (1 +O(m̂/Λ)1/A) , (2.6)

which may be viewed as a generalization (for m 6= 0) of dimensional transmutation.
Eq. (2.6) readily reproduces, e.g., the GN O(N)
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Figure 1: The Lambert function W (x)

compared to lnx.

model mass gap [8] in the large N , m → 0 limit
(where A → 1 for N → ∞). A crucial point is
the difference between the usual effective coupling

g(p2) ≡ 1/[b0 ln(p2/Λ2)], having a Landau pole at
p2 = Λ2, and F−1(m̂) here, having its pole at m̂ =
0, governing the massless limit (2.6) of the pure RG

dependence in Eq. (2.1).

3. Borel summability near the chiral limit

Unfortunately, (2.1) differs crucially from the “pure

RG” mass, Eqs. (2.5),(2.6) essentially because the

coefficients dn behave generically as[3]:

dn+1 ∼ (2b0)n n! (3.1)

for n→∞, so that the series Eq. (2.1) is badly divergent for any m̂ > 0, and not even Borel
summable. More precisely, assuming the behaviour (3.1), the Borel integral of Eq. (2.1)

reads:

BI(m̂) ∼ 2−C Λ eF (C + F )−C
∫ ∞
0
dte−t [1 + (2b0 F )−1

∞∑
n=0

(
t

F
)n]. (3.2)

For any F > 0, this expression would be (asymptotically) equal to (2.1) by formal ex-

pansion, would the pole at t = F not make the integral (3.2) ill-defined. One should

deform the contour in a non-unique way, going above or below the pole, which leads to

an ambiguity O(e−F ) ∼ O(Λ/m̂) for the “short distance” (m̂ � Λ) pole mass, in agree-
ment with standard results[3]. However, (3.2) can be defined unambiguously, if F < 0:

then F ≡ −|F | simply produces the adequate sign alternation in the factorially growing
coefficients[2]. Indeed, F is well-defined (analytic) in a circle of radius ∼ e−AAA around
m̂ = 0 and Re[F ] < 0 for m̂ < 0 (cf Fig. 1, for A = 1). Eq. (3.2) for Re[F ] < 0 gives:

M̃P/Λ ∼ e−|F | + 1

2b0
Ei(−|F |) (3.3)

in terms of the (well-defined) exponential integral function Ei(−x) = − ∫∞x dte−t/t (where
for simplicity we neglected in (3.3) the second RG order dependence, irrelevant to large

order properties). We obtain in this way Borel convergence for a certain range of the

arbitrary mass, strictly only for Re[m̂] < 0. Moreover, simply from the properties of F

around F <∼ 0 the Borel sum (3.3) reproduces qualitatively the asymptotic behaviour of
the exact 1/N mass gap in the O(N) GN model, which has an explicitly Borel summable

perturbative expansion[11].
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4. Variationally improved mass expansion

We examine now how to complement the previous construction, based only on RG proper-

ties, by combining it with a delta-expansion/variationally improved perturbation[4] (DE-

VIP). We define a (linear) DE-VIP as the substitution

m(µ)→ (1− δ) mv; g2(µ)→ δ g2(µ) (4.1)

within perturbative expressions at arbitrary order, where m(µ) is a (renormalized) La-

grangian mass, δ the new expansion parameter, and mv an arbitrary adjustable mass.

(4.1) is entirely compatible with renormalization[1]. Using (4.1) in Eq. (2.1), MP (m̂, δ) ≡∑
k ak(m̂)δ

k can be most conveniently directly resummed, for δ → 1, by contour integra-
tion [1] around δ = 0, to arbitrary order K: an appropriate change of variable allowing to

study the m(µ)→ 0 (equivalently δ → 1) limit in Eq. (4.1) is δ ≡ 1− v/K ; mv = K m̂v.
The final contour integral summation gives[2] for K →∞:

MP /Λ ∼ 1 + 1

2b0

N∑
q=1


 N−q∑
p=0

Γ[p+ q](p + q +A)(q +A)p−1

Ap Γ[1 + p] Γ[1 + q/A]


 (m”)−q/A (4.2)

(again assuming the leading renormalon behaviour (3.1), with n ≡ p + q), where m” ≡
m̂v/Λ, N is maximal perturbative order, and the contour encircles the semi-axis Re[v] <

0. Eq. (4.2) accordingly exhibits a factorial damping of coefficients (as compared to the

original perturbative expansion) from the 1/Γ[1 + q/A] terms, where A in (2.3) is scheme-

dependent. Yet, closer examination indicates that the damping is insufficient to make

this series readily convergent for N →∞, m” > 0. Nevertheless, the damping of factorials
from appropriate RS choice gives more interesting results, when the series Eq. (4.2) is Borel

resummed. Skipping algebra details, it gives[2] the asymptotic behaviour for N →∞:

BIvar(m
”) ∼ Λ[1 +

∫ ∞
0

dt

2b0

∞∑
q

(tAet/m”)q/A

Γ[1 + q/A]
] (4.3)

so that the Borel integrand in (4.3) is an entire series (at least for A > 0), with no poles

for 0 < t < ∞. The pole at t0 = 1 in the original Borel integrand (3.2) was pushed
to t0 → +∞ due to the factorial damping, so that the integral is no longer ambiguous.
However, Eq. (4.3) can only converge if Re[m”] < 0. This is the case at least for A = 1,

which can always be chosen by a simple scheme change, γ1 in (2.3) being scheme dependent.

Thus, again one can reach the chiral limit m” → 0, of main interest, within the Borel-
convergent half-plane Re[m”] < 0. Now, the DE-VIP expansion Eq. (4.3) improves further

the asymptotic behaviour of the series as compared to (3.3), at least for A = 1, due to the

extra factorial damping. For A = 1 and Re[m”] <∼ 0 Eq. (4.3) reads

M̃Pvar(m
”) ∼ const. Λ (1 + f(|m”|) ) (4.4)

where f(|m”|) → 0 exponentially fast for |m”| → 0 and the unspecified constant includes
second order RG dependence, cf. Eq.(2.1), (3.2).
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5. Discussion

The final DE-VIP result (4.4) is however not completelly independent of the perturbative
information, the corresponding series for the asymptotic behaviour being not the exact
original series from Eq (2.1). Rather, (4.4) suggests that the “non-perturbative” result in
the chiral limit may be essentially determined by pure RG properties, plus eventually the
very first few perturbative terms, but not influenced by details of the large perturbative
orders. Indeed, renormalon ambiguities are perturbative artifacts expected to disappear
(more precisely to cancel out with OPE contributions) in truly non-perturbative
calculations[12, 3, 13, 11], but explicit cancellations are usually inaccessible from the
purely perturbative information alone. The (Borel) convergence properties exhibited here
are essentially due to the basic properties of the function F in (2.4),(2.2), which has a
power dependence on m̂v/Λ, for sufficiently small m̂v. Moreover, the (arbitrary) DE-VIP
mass parameter m̂v/Λ may be rescaled, and/or can take values such as Re[m̂v/Λ] < 0,
producing sign alternation of factorial coefficients. Our expansion thus appears to
”bypass” the need for explicit cancellation between perturbative and non-perturbative
contributions, at least for certain physical quantities like the mass gap. Since these
formal Borel convergence properties are a priori applicable to any AFT, we argue that it
can provide a way to estimate, from direct resummation of this alternative expansion,
some of the chiral symmetry breaking order parameters in QCD or other models, which
like the mass gap are similarly accessible in the chiral limit from this construction[1].
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