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Abstract:We review the recent determination of the matrix elements of the electroweak

penguin operators Q7 and Q8 at order O(p0) and in the framework of the large-NC
expansion of QCD. We discuss several issues, like the scale and scheme dependence, and

compare our results to those obtained through dispersion relations and sum rules, or from

numerical simulations on the lattice.

1. Introduction

At low energies, the effective Hamiltonian of ∆S = 1 weak hadronic transitions is described

in terms of a set of four-quark operatorsQi(µ, κ), modulated byWilson coefficients Ci(µ, κ),

H∆S=1 = GF√
2
VudV

∗
us

∑
i

Ci(µ, κ)Qi(µ, κ) . (1.1)

The latter contain the information from the short distances, and can be computed per-

turbatively. The perturbative contributions need however to be renormalized, so that the

coefficients Ci(µ, κ) depend on the renormalization scale µ introduced by the minimal sub-

traction in dimensional regularization, as well as on the scheme used in order to define

the γ5 matrix in D dimensions, the basis of evanescent operators, and the like [1]. This

is indicated by the the presence of the second argument, κ. The long-distance physics

is contained in the hadronic matrix elements of the four-quark operators Qi(µ, κ), which

depend likewise on the renormalization scale µ and on the scheme κ involved in the com-

putation of the Wilson coefficients. Physical quantities like hadronic matrix elements of

H∆S=1 should depend neither on the choice of the factorization scale µ, nor on the scheme
κ. This requirement puts a stringent constraint on any theoretical or phenomenological

approach aiming at evaluating the matrix elements of the four-quark operators Qi(µ, κ).

∗Speaker.
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The present contribution, based on the work published in [2], is devoted to the elec-

troweak penguins Q7 and Q8. We shall consider the ∆I = 3/2 components, Q
(3/2)
7 and

Q
(3/2)
8 , of these operators,

Q
(3/2)
7 = 2(sLγµdL)[(uRγ

µuR)− (dRγµdR)] + 2(sLγµuL)(uRγµdR) ,
Q
(3/2)
8 = −4(sLuR)(uRdL) + 4(sLdR)[(dRdL)− (uRuL)] , (1.2)

and restrict ourselves to the chiral limit, where the K → ππ and K → π matrix elements

are given as

〈(ππ)2|Q(3/2)7 |K0〉 = − 1
F0
〈π+|Q(3/2)7 |K+〉 = − 4

F 30
〈O1〉

〈(ππ)2|Q(3/2)8 |K0〉 = − 1
F0
〈π+|Q(3/2)8 |K+〉 = 8

F 30
〈O2〉 , (1.3)

with 〈O1〉 = 〈0|(sLγµdL)(dRγµsR)|0〉, 〈O2〉 = 〈0|(sLsR)(dRdL)|0〉. Note that O1 is a
current-current operator, whereas O2 is a density-density operator. Their vacuum expec-

tation values have therefore very different behaviours in the 1/NC expansion. Thus, 〈O1〉
has no factorized contribution, and behaves as O(NC), 〈O1〉 = 0 + 〈O1〉|O(NC ) + O(N0C).
On the other hand, the LO contribution to 〈O2〉 is a O(N2C) factorized piece, while the
NLO correction vanishes, 〈O2〉 = 〈O1〉|O(N2C ) + 0 + 〈O2〉|O(N0C ) +O(N

−1
C ).

2. Evaluation of 〈O1〉
As shown in [3], 〈O1〉 can be expressed in terms of an integral involving the 〈V V − AA〉
QCD two-point function ΠLR (see [4] for a survey of its properties),

〈O1〉 = 1

2i
ηµν
∫

d4q

(2π)4
(qµqν − q2ηµν)ΠLR(q) . (2.1)

As it stands, this integral diverges and needs to be renormalized. For consistency, this

should be done in the same scheme that was used in the computation of the Wilson coef-

ficient C7(µ, κ). As a first step, we regularize this integral in D = 4− ε dimensions,

〈O1〉reg = 1−D
32π2

(4πµ2)ε/2

Γ(2− ε/2)
∫ ∞
0

dQ2(Q2)1−ε/2(−Q2ΠLR(Q2))D . (2.2)

The matching to the short-distance contributions contained in C7(µ, κ) is controled by the

OPE. In D dimensions and in the large-NC limit, one has

lim
Q2→∞

(1−D)(−Q2ΠLR(Q2))D = −12π2( αs
π
+ O(α2s))

[
1 + (κ− 2/3) ε

2

] 〈ψ̄ψ〉2
Q4

, (2.3)

where κ depends on the renormalization scheme. We find, in agreement with [5], κ = −1/2
in the NDR scheme, and κ = +3/2 in the HV scheme.

In order to obtain 〈O1〉|O(NC), we need to know (−Q2ΠLR(Q2))D in the large-NC
limit. But in this limit, ΠLR(Q

2))D is described by an infinite number of single poles, due
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to zero-width vector and axial resonances, and to the pion pole. Furthermore, one knows

the asymptotic behaviour in D dimensions, limQ2→∞(−Q2ΠLR(Q2))D ∼ 1/Q6. Taken
together, these informations lead to the following expression [4, 6]:

(−Q2ΠLR(Q2))D =
∑
A

f2AM
6
A

Q2(Q2 +M2
A)
−
∑
V

f2VM
6
V

Q2(Q2 +M2
V )

. (2.4)

Then, after renormalization in the MS scheme, one ends up with the formula

〈O1〉MS(µ, κ) |O(NC) = −
3

32π2

[∑
A

f2AM
6
A ln

Λ2

M2
A

−
∑
V

f2VM
6
V ln

Λ2

M2
V

]
, (2.5)

where the scale Λ clearly shows the dependence with respect to the renormalization scale

µ and to the renormalization scheme, Λ2 ≡ µ2exp(1/3 + κ).

3. Evaluation of 〈O2〉

As mentioned earlier, the leading contribution to 〈O2〉 in the 1/NC expansion is O(N2C)
and corresponds to two disconnected flavour-singlet quark loops, 〈O2〉|O(N2C ) = 〈ψ̄ψ〉2/4.
The correction to this result consists of the two previous quark loops connected by a planar

gluonic configuration. This is a so-called Zweig-suppressed contribution, and is of order

O(N0C). It is governed by a two-point function involving scalar and pseudoscalar densities,

〈O2〉|O(N0C) =
1

i

∫
d4q

(2π)4
Ψds(Q

2) , (3.1)

with

Ψij(Q
2) = i

∫
d4xeiq·x〈0|T{q̄i(x) 1 + γ5

2
qi(x)q̄j(0)

1− γ5
2

qj(0)}|0〉 . (3.2)

As in the case of Eq. (2.1), the integral in (3.1) has to be regularized and renormal-

ized in the same scheme as the one used for the short-distance calculation of the Wilson

coefficients. One might think that the next step would proceed as in the case of the ΠLR
correlator, namely by setting up a large-NC ansatz for Ψds(Q

2), which correctly reproduces

the QCD short-distance properties of this two-point function, which incidentally is also an

order parameter of the SU(3)L × SU(3)R chiral symmetry. There is however little reason
to expect such an approach to provide a realistic description of Ψds(Q

2), the reason being

that it involves the singlet scalar and pseudoscalar channels, which are notoriously difficult

to understand within a large-NC framework. For instance, a nonet of narrow scalar reso-

nances is hard to identify, due to the mixing with scalar glueball states, or with a broad

σ resonance produced by strong final state interactions in the J = 0, I = 0 ππ channel 1,

etc. In the singlet pseudoscalar channel, one encounters the η′, which becomes a massless
Goldstone boson in the large-NC limit, etc. All these effects are likely to be important,

1For a detailed review on the phenomenological situation in the scalar channel, see [7]; for discussions

on the Zweig rule violation in the scalar sector, see Refs. [8, 9].
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although subleading in the large NC expansion. As an illustration, let us consider the

contribution of the lowest pseudoscalar, flavour singlet meson to the integral (3.1),

1

i

∫
d4q

(2π)4
Ψds(Q

2)

∣∣∣∣
MS

η[0)
= −

M2
η(0)

16π2F 20

〈ψ̄ψ〉2
6

(
ln

µ2

M2
η(0)

+ 1

)
. (3.3)

SinceM2
η(0)
∼ O(1/NC), this contribution is indeed of orderN0C . As compared to 〈O2〉|O(N2C ),

the factor in front of the bracket containing the logarithm amounts to ∼ − 0.5 〈ψ̄ψ〉2/4,
a very large correction indeed, although the suppression factor is formally 1/N2C !

In order to circumvent this difficulty, we come back to the short-distance behaviour

(for D = 4) in Eq. (2.3), but without using the large-NC limit on the right-hand side,

lim
Q2→∞

(−Q2ΠLR(Q2))D = 4π2 αs
π

[
4(1+ξ(κ)

αs
π
+ · · ·)〈O2〉 + ( 2

NC
+ · · ·)〈O1〉

]
/Q4 . (3.4)

The term proportional to 〈O1〉 being small as compared to the other one (this can be
checked a posteriori, using the numerical estimates given below), we neglect it and, using

the large-NC ansatz (2.4) in order to compute the right-hand side, we arrive at

〈O2〉MS(µ, κ) | =
∑
A f

2
AM

6
A −
∑
V f2VM

6
V

16παs(µ)[1 + ξ(κ)
αs(µ)
π +O(α2s)]

. (3.5)

Notice that, due to the approximation that was made, the scheme dependence is no longer

described in an exact manner. The only scheme dependence left over is burried in the

coefficient ξ(κ) of the O(α2s) correction to the Wilson coefficient of the 〈O2〉 term in (3.4),
which was not known at the time Ref. [2] was written. In the meantime, it has been

computed in Ref. [10]: ξ(κ = −1/2) = 25/8 (NDR), and ξ(κ = 3/2) = 21/8 (HV).

4. Numerical values and concluding remarks

We now turn to the numerical evaluations of the matrix elements M7,8 = 〈(ππ)2|Q7,8|K0〉
at order O(p0), based on the expressions (2.5) and (3.5) for 〈O1〉 and 〈O2〉, with the
respective sums over the vector and axial resonances restricted to the lowest lying state in

each channel. For the various quantities that appear in these equations we use the values

given in Ref. [2], together with the determination of ξ(κ) of Ref. [10]. The results are then

given in Table 1 below, where we also display other recent results for M7,8.

With the O(α2s) corrections included, our results are in good agreement with those
obtained from a dispersive approach [10], and, in the case of M8, numerically reproduce

the same (mild) scheme dependence, despite of the approximation we have made. On the

other hand, the differences with the lattice results [11] and with Ref. [12] are important.

Concerning the former, one should keep in mind that they were obtained in the quenched

approximation, where the η(0) singlet is certainly very badly mistreated. As we have

discussed, the η(0) contribution to M8 could be important.

As far as our method is concerned, let us stress that it can be improved, by keeping

several resonances in a given channel, provided additional information, for instance sub-

leading terms in the OPE, are available [4, 14]. It can also be implemented in cases
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Matrix Elements M7(NDR) M7(HV) M8(NDR) M8(HV)

Ref. [11] 0.11 ± 0.04 0.18 ± 0.06 0.51 ± 0.10 0.62 ± 0.12
Refs. [12] 0.26 ± 0.03 0.39 ± 0.06 1.2 ± 0.5 1.3 ± 0.6
Refs. [5] 0.22 ± 0.05 1.3 ± 0.3
Refs. [13] 0.35 ± 0.10 2.7 ± 0.6
Refs. [10] 0.16 ± 0.10 0.49 ± 0.07 2.22 ± 0.67 2.46 ± 0.70

Ref. [2] and ξ(κ) from Ref. [10] 0.11 ± 0.03 0.67 ± 0.20 2.6 ± 0.9 2.9 ± 1.1
Table 1: Summary of matrix elements M7,8 ≡ 〈(ππ)I=2|Q7,8|K0〉(2GeV) using naive dimensional
regularization (NDR) and the ’t Hooft-Veltman scheme (HV), in units of GeV3.

where a dispersive approach is of little help in practice, for instance if three-point functions

[15, 16, 14] or higher [17, 18] are involved.
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