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Abstract:We present the status of a lattice calculation for the K → ππ matrix elements

of the ∆S = 1 effective weak Hamiltonian which are relevant in the determination of ε′/ε
and for the ∆I = 1/2 rule, directly with two pion in the final state. For ∆I = 3/2

matrix elements, we propose a strategy to study the chiral behaviour at next to leading

order in ChPT. Some preliminary results for the matrix elements of Q+, Q7 and Q8 are

given. Finally, we briefly discuss the ∆I = 1/2 case which, due to the requirement of

non-perturbative subtraction, is much more difficult. We show the signal observed for the

matrix elements of Q− and Q6.

1. General Strategy

Kaon weak decay amplitudes can be described in terms of matrix elements (ME’s) of the

∆S=1 effective weak Hamiltonian. H∆S=1 is written as a linear combination of a complete
basis of renormalized local operators (OP’s) Q̂i(µ), where µ is the renormalization scale.

The most relevant contributions in the computation of the weak amplitudes AI=0,2 and
of ε′/ε are given by the ME’s 〈ππ|Q̂i(µ)|K〉I=0,2 of Q̂+, Q̂−, Q̂6, Q̂7 and Q̂8, which are
defined as follows:

Q± = (s̄u)L(ūd)L ± (s̄d)L(ūu)L − (u→ c) Q7 =
3

2
(s̄αdα)L

∑
q=u,d,s,c

eq(q̄βqβ)R

Q6 = (s̄αdβ)L
∑

q=u,d,s,c

(q̄βqα)R Q8 =
3

2
(s̄αdβ)L

∑
q=u,d,s,c

eq(q̄βqα)R (1.1)

where α, β are colour indices and eq is the electric charge of q. (ψ̄1ψ2)L,R means ψ̄1γµ(1∓
γ5)ψ2. In order to compute these ME’s from lattice QCD, one has to renormalize the bare

(divergent) lattice OP’s. Two methods are possible on the lattice:

1) Compute 〈0|Q̂i(µ)|K〉 and 〈π|Q̂i(µ)|K〉 and then derive 〈ππ|Q̂i(µ)|K〉I=0,2 using soft
pion theorems [1]. In this case, besides the difficulties in controlling chiral behaviour, a

major problem is the inclusion of higher order contributions in the chiral expansion which
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should reconstruct the final state interaction (FSI). In fact, in this approach, only K → ππ

ME’s at lowest order in ChPT can be obtained (see Refs. [2]).

2) Compute directly 〈ππ|Q̂i(µ)|K〉I=0,2. The main difficulty in this case is the relation be-
tween ME’s in a (Euclidean) finite volume and the corresponding physical infinite volume

ones. Even if, in principle, it is possible to take into account FSI exactly [3, 4], in prac-

tice these methods are numerically very demanding. So, with present computing power,

only simulation at unphysical kinematics may be achieved, and ChPT is still needed to

extrapolate to the physical point.

In this work we choose the second strategy. To extract ME’s we place the local OP

Qi in the origin and we use three local interpolating fields, one at time t2 = 10 which

annihilates one pion in the two pion state and one at time tK = 54 ≡ −10 which creates
a K (both with zero momentum). t2 (tK) must be chosen large enough in modulus for

the two pion state (the kaon state) to be asymptotic. The third one annihilates at time t1
(not fixed) the second pion with momentum either 0 or 2π/L. As shown in [4], in the limit

T/2� t1� t2� 0, T� tK�T/2 we have

〈0|T [π̂1(t1)π̂2(t2)Qi(0)K̂(tK)]|0〉V
Gπ(t1)Gπ(t2)GK(tK)

Z2πZK −→
{
|〈ππ|Qi|K〉| cos δ(W ) +O

( 1
L

)}
e
−(W−Eπ−Mπ)t2

where Gπ(t) = 〈0|T [π̂(t)π̂†(0)]|0〉V , Zπ = |〈0|π̂|π〉| (the definition of GK(t) and ZK is
analougous), |ππ〉 is the lower two pion state with the same momentum injected by π̂1.
∆E = W−Eπ−Mπ is the energy shift of two pions in a finite volume (FV) while δ(W )
is the strong interaction phase (which depends on the isospin and on the energy of the

two pion state). In order to extract the physical ME, one needs to compute both the

FV corrections for the ME (represented above by the term O(1/L)) and the FV energy

shift. Theoretical predictions [5] show that the factor exp(−∆Et2) should give relevant
corrections: of order 5÷ 10% in the ∆I = 3/2 channel and of order 25% (or larger) in the
∆I = 1/2 one. A numerical study of the FV energy shift, for both I = 2 and I = 0 two

pion states, is presently under way [6]. Preliminary results for ∆E are in good agreement

with theoretical predictions for I = 2, while they are in stricking disagreement in the I = 0

case, where even the dependece of the energy shift on the mass of the pion is different to

the one predicted. Since we work with large unphysical pion masses (500 − 700 MeV),
this problem coluld be due to the presence of a stable scalar particle below the two pion

state. In this case the behaviour of the shift measured should have only exponentially small

correction in the volume. Instead the “genuine” FV energy shift of the two pion state has

a power dependence on the volume. To clarify the situation we are thus currently varying

the volume of the simulations and trying to reach smaller masses. We are also computing,

by using FV quenched ChPT (qChPT), the corrections to the ME indicated above with

the O(1/L) term.

2. ∆I = 3/2 ME’s at next-to-leading order in ChPT

As explained in the previous section, we extract the ME’s of the OP’s Qi ∈ {Q+, Q7, Q8}
between K+ at rest and two pions, one (which can be interpreted either as the π+ or as

the π0) at rest and the other with momentum |~p| = 0, 2π/L. In the latter case, to have a

– 2 –



h
e
p
2
0
0
1

International Europhysics Conference on High Energy Physics Mauro Papinutto

pure I = 2 state, we symmetrize the two pion state. In the I = 2 channel, cos δ(W ) = 1 to

a good approximation also in the case of pion with non-zero momentum. In the following

analysis, corrections due to the FV energy shift are already included.

The leading term in the chiral expansion is O(p2) for Q+ (which, under the chiral

SU(3)L ⊗ SU(3)R, transforms in the (27,1) representation) and O(p0) for Q7,8 (which

transform in the (8,8) representation). In both cases there is only one representative

OP at this order. To include next-to-leading order (NLO) corrections (O(p4) for Q+

and O(p2) for Q7,8) in the extrapolation to the physical point, we have to compute the

expression for the ME’s in one loop ChPT, in our unphysical kinematics. This contains

two parts: the chiral logarithms, which come from the loops and are proportional to the

leading order coupling; the counterterms of the NLO, which cancel the divergences of

the loop integrals and compensate the renormalization scale dependence coming from the

logarithms, ensuring the scale indipendence order by order in the expansion. In the (27,1)

representation there are 34 OP’s at O(p4) [7]. For our kinematics only O(27)2 , O(27)4 , O(27)5 ,

O(27)7 , O(27)22 and O(27)24 of [7] are indipendent. In the (8,8) representation, at O(p2) seven

OP’s O(8,8)i (i = 1, 2, . . . , 7) are needed [8]. Due to the energy-momentum injection in the

weak OP, the calculation is much more involved than for the physical kinematics (reported

in Ref. [9] for (27,1) OP’s and in Ref. [8] for (8,8) OP’s). For the sake of illustration we

present here the case of (8,8) OP’s (analogous expressions can be written for the (27,1)

OP’s, see [10] for a more detailed presentation) at the physical point

M(8,8)
phys = γ + {4δ6 − (δ2 + δ3) + 2(δ4 + δ5)}m2K +

{(δ1 + δ2) + 4(δ4 + δ5) + 2δ6}m2π + γ × (chiral logs)(8,8)phys (2.1)

(where mπ and mK are the physical masses) and, in the unphysical kinematics,

M(8,8)
unphys = γ + {4(δ4 + δ5) + 2δ6}M2

π + {−(δ1 + δ2)}EπMπ + {
1

2
(δ1 + δ2)−

(δ2 + δ3)}(Mπ + Eπ)MK + {2(δ4 + δ5) + 4δ6}M2
K + γ × (chiral logs)(8,8)unphys (2.2)

This expression is function of three variables (MK , Mπ and Eπ). By varying the kaon and

pion masses and momenta, one may fit the coefficients of the leading order OP and some

combinations of the coefficients of the NLO (usually called low energy constants (LEC’s),

indicated as γ and δi in Eq. (2.2)). It is easy to show that these combinations are enough

to compute, at NLO, the expression at the physical point (Eq. 2.1).

Until now, our discussion was referred only to infinite volume full ChPT. However, to

have the correct comparison with numerical results, a one loop computation in FV qChPT

is presently under way. In qChPT with mu = md 6= ms, unphysical divergences appear in

the limit mu,md → 0 (see for example [9]). So, it is clear that qChPT can only be used
to estimate the LEC’s from numerical simulation. This represent our best estimate of the

LEC’s of the full theory, and full ChPT should thus be used for the extrapolation to the

physical point.

Since at present the computation of the chiral logarithms for our kinematics is not

yet completed, we give here preliminary results obtained from a fit in which only the

contribution of NLO operators is included. We report in Tab. 1 the results of a fit which

includes values of MK , Mπ and Eπ smaller than 1 GeV. In the case of Q
+ we started
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C+〈π+π0|O+|K+〉 〈ππ|O7(2 GeV)|K0〉I=2 〈ππ|O8(2 GeV)|K0〉I=2
LO 0.0107(20) 0.05(1) 0.57(6)

NLO/LO ≈ −(0.05÷ 0.10) -0.4(1) -0.07(2)

expt. value 0.01041

from K → π 0.11(2) 0.51(5)

Table 1: Results are in GeV3. 340 configurations, β = 6.0 on a 243 × 64 volume. Only point with
values of MK , Mπ and Eπ smaller than 1 GeV are included in the fit. Results from lattice K → π

matrix elements are taken from [11]. ME’s of Q7,8 are in MS NDR.

our analysis with the O(p4) operators classified in [12], which are the only needed at the

physical point. We later realize that in our unphysical kinematics other two operators were

neded (namely O(27)22 and O(27)24 ). Once included in the fit, the determination of the LO

contribution remains stable while NLO contribution becomes unstable. For this reason we

give here only the order of magnitude of this correction. The low value for the ME of

Q7 originates from large cancellations occurring in the renormalization of the bare lattice

operator and deserves further investigation. In Fig. 1.a we show the values in lattice units

of the ME’s of the bare Q8, in function ofM
2
K , and the corresponding values of the fit with

Eq. 2.2 (without chiral logarithms).

3. Very briefly on ∆I = 1/2 ME’s

∆I=1/2 OP’s mix, through penguin contractions, also with lower dimensional OP’s with

power divergent coefficients. In this case a non-perturbative subtraction is needed (in both

strategies: K → ππ or K → π). Here we will present preliminary results (obtained with

the same set of 340 configurations used for ∆I = 3/2 ME’s) for Q− and Q6 with the
purpose of showing that, for the first time, a signal has been observed.

Q− enters, together with Q+ (for their definition see Eq. (1.1)), in the computation of
ReAI=0. In our simulation the charm quark is propagating. Due to the GIM mechanism,
the subtraction is thus implicit in the difference of penguin diagrams with an up quark and a

charm quark inside the loop. In Fig. 1.b the penguin contractions of the bare O− are shown,
in a kinematical configuration in which MKa = 2Mπa = 0.72. It is interesting, even though

only indicative, to note that the ratio of bare OP’s 〈ππ|Q−|K〉I=0/〈ππ|Q+|K〉I=2 ≈ 9. In
fact, although affected by a huge statistical error and incomplete for the lacking of the RC’s

and of part of the contractions, this result shows that penguin contractions are of the right

order of magnitude needed to explain the ∆I=1/2 rule (remember that the ratio of Wilson

coefficients |C−(µ = 2GeV)/C+(µ = 2GeV)| ≈ 2). Concerning O+, penguin contractions
gives a value close to zero (but again with large errors).
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Figure 1: a. values (in lattice units) of the ME’s of the bare Q8 and corresponding fit, as function

of M2
K . b. Plateau for the ME of the bare Q

− (only penguin contractions, scales in lattice units).
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Figure 2: a. Plateau for the ME of the bare Q6 (only penguin contractions). b. Plateau for

〈ππ|Cp/a2(ms−md)s̄γ5d|K〉 (all scales are in lattice units).

In Fig. 2.a we show the signal found for the ME of the bare QCD penguin Q6 (defined

in Eq. (1.1)), again with MKa = 2Mπa = 0.72. Q
6 mixes in the following way:

Q̃6 = Q6 +
Cp
a2
(ms−md)s̄γ5d . (3.1)

The subtraction is determined by imposing that 〈0|Q̃6|K〉 = 0. By using fully O(a) im-
proved fermions this subtraction is finite. In fact we have

〈ππ|s̄γ5d|K〉 = 〈ππ|
∂µA

I
µ

(ms +md)Z
I
P

|K〉+O(a2) ,

where the ME of ∂µA
I
µ vanishes on-shell. In Fig. 2.b we can see that the subtraction seems

to be not only finite, but also much smaller than 〈ππ|Q6|K〉 and thus under control. In
order to reduce the statistical errors, a study to find the best source for the two pion state

is presently under way. Finally, we want to mention that, in the quenched approximation,

there are special problems related to the (8,1) OP’s (like Q− and Q6) [13] which deserves
further investigation in order to extract sensible results.

References

[1] C. Bernard, T. Draper, A. Soni, H.D. Politzer and M.B. Wise, Phys. Rev. D32 (1985) 2343.

[2] CP-PACS Collaboration (J. I. Noaki et al.), [hep-lat/0108013];

RBC Collaboration (T. Blum et al.) [hep-lat/0110075].
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[5] M. Lüscher, Comm. Math. Phys. 105 (1986) 153.

[6] SPQCDR (Ph. Boucaud et al.), presented at LATTICE 2001, [hep-lat/0110169].

[7] J. Kambor, J. Missimer and D. Wyler, Nucl. Phys. B346 (1990) 17.

[8] V. Cirigliano and E. Golowich, Phys. Lett. B475 (2000) 351, [hep-ph/9912513].

[9] M. Golterman and K. C. Leung, Phys. Rev. D56 (1997) 2950, [hep-lat/9702015].

[10] SPQCDR (Ph. Boucaud et al.), presented at LATTICE 2001, [hep-lat/0110206].

[11] A. Donini, V. Gimenez, L. Giusti and G. Martinelli, Phys. Lett. B470 (1999) 233.

[12] M. Golterman and E. Pallante, JHEP 0008 (2000) 023, [hep-lat/0006029].

[13] M. Golterman and E. Pallante, [hep-lat/0108010].

– 5 –


