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Abstract: The formulation of 2d-dilaton theories, like spherically reduced Einstein grav-

ity, is greatly facilitated in a formulation as a first order theory with nonvanishing bosonic

torsion. This is especially also true at the quantum level. The interpretation of superex-

tensions as graded Poisson sigma models is found to cover generically all possible 2d

supergravities. Superfields and thus superfluous auxiliary fields are avoided altogether.

The procedure shows that generalizations of bosonic 2d models are highly ambiguous.

Despite the fact that so far no tangible direct evidence for supersymmetry has been

discovered in nature, supersymmetry [1] managed to retain continual interest within the

aim to arrive at a fundamental ‘theory of everything’ ever since its discovery: first in

supergravity [2] in d = 4, then in generalizations to higher dimensions of higher N [3], and

finally incorporated as a low energy limit of superstrings [4] or of even more fundamental

theories [5] in 11 dimensions.

Even before the advent of strings and superstrings the importance of studies in 1 + 1

‘spacetime’ had been emphasized [6] in connection with the study of possible superspace

formulations. To the best of our knowledge, however, to this day there have been only few

attempts to generalize the supergravity formulation of (trivial) Einstein-gravity in d = 2

to the consideration of two-dimensional (1, 1) supermanifolds for which the condition of

vanishing (bosonic) torsion is removed [7, 8]. Only attempts to formulate theories with

higher powers of curvature (at vanishing torsion) seem to exist [9]. There seem to be only

very few exact solutions of supergravity in d = 4 as well [10].

Especially at times when the number of arguments in favour of the existence of an, as

yet undiscovered, fundamental theory increases [3] it may seem appropriate to also exploit

— if possible — all generalizations of the two-dimensional stringy world sheet. Actually,
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such an undertaking can be (and indeed is) successful, as suggested by the recent much

improved insight, attained for all (non-supersymmetric) two-dimensional diffeomorphism

invariant theories, including dilaton theory, and also comprising torsion besides curvature

[11] in the most general manner. In the absence of matter-fields (non-geometrical degrees

of freedom) all these models are integrable at the classical level and admit the analysis of

all global solutions [12]. Even many aspects of quantization of any such theory now seem

to be well understood [13]. By contrast, in the presence of matter and if singularities like

black holes (BH) occur in such models, integrable solutions are known only for very few

cases. These include interactions with fermions of one chirality [14] and, if scalar fields

are present, only the dilaton black hole [15], “chiral” scalars [16] and models which have

asymptotical Rindler behaviour [17]. Therefore, a supersymmetric extension of the mat-

terless case suggests that the solvability may carry over, in general. Then, at least part of

“matter” could be represented by superpartners of the geometric bosonic field variables.

At the quantum level for bosonic gravity in two dimensions the path integral formalism has

proved to be invaluable to exactly integrate geometry and to treat matter in a consistent

perturbation theory [18]. Also this exact geometrical integration should carry over to the

supergravity case.

Within the realm of bosonic two dimensional gravity theories, including those with nonva-

nishing torsion, the reformulation as a first order action [19, 20] with auxiliary fields φ and

Xa (Y = XaXa/2)

LFOG =

∫
M
φdω +XaDe

a + εv(φ, Y ) (1)

has led to new insights. Indeed LFOG for a potential v quadratic in torsion

vdil(φ, Y ) = Y Z(φ) + V (φ). (2)

is exatly equivalent [12],[18] to a generalized dilaton theory

Ldil =

∫
d2x
√−g

[
R̃

2
φ− 1
2
Z(φ)(∂nφ)(∂nφ) + V (φ)

]
. (3)

where R̃ represents the torsion free curvature. A special case of such dilaton theories is

spherically reduced Einstein gravity (SRG) in D dimensions

ZSRG = −D − 3
D − 2 φ

−1

VSRG = −λ2 φ
D−4
D−2

(4)

with the Schwarzschild BH solution. Also the so-called dilaton BH [15] (D → ∞ in (4))
and a “Poincaré gauge” [21] theory quadratic in curvature and torsion [11] and simpler

models with Z = 0, like the Jackiw-Teitelboim gravity (v = −Λφ) [22] are covered by (3)
and thus also by (1).

Our present approach to obtain the minimal supergravity extensions of generic models of

type (1) is based upon the concept of the Poisson-Sigma models (PSM) [19, 23, 24].
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Collecting zero form and one-form fields, respectively, within (1) as

(Xi) := (φ,Xa), (Ai) = (dx
mAmi(x)) := (ω, ea), (5)

and after a partial integration, the action (1) may be rewritten as

LPSM =

∫
M
dXi ∧Ai + 1

2
PijAj ∧Ai, (6)

where the matrix Pij may be read off by direct comparison. The basic observation in
this framework is that this matrix defines a Poisson bracket on the space spanned by

target space coordinates Xi of a Sigma Model. In the present context the related bracket

{Xi,Xj} := Pij has the form

{Xa, φ} = Xbεba, (7)

{Xa,Xb} = v(φ, Y )εab . (8)

This bracket may be verified to obey the Jacobi identity {{Xa,Xb},Xc} + cycl. perm. =
0. Eq. (7) shows that φ is the generator of Lorentz transformations (with respect to

that bracket) on the target space R3. Minimal supersymmetric extensions are obtained

[25, 26] and [27] by adding additional anticommuting target space coordinates χα and

corresponding Rarita-Schwinger 1-form fields ψα in (5), X
I = (Xi, χα) and AI = (Ai, ψα)).

Thus the PSM action (6) generalizes to

LgPSM =

∫
M
dXIAI +

1

2
PIJAJAI . (9)

Both χα and ψα denote Majorana fields, when, as in what follows, N = 1 supergravity is

considered. The graded Poisson tensor PIJ = (−1)IJ+1PJI is again assumed to fulfil a
“graded” Jacobi identity

JIJK = PIL→∂ LPJK + gcycl(IJK) = 0 . (10)

Together with (10) the e.o.m-s with right derivatives
→
∂ I =

→
∂
∂XI

dXI + PIJAJ = 0, (11)

dAI +
1

2
(
→
∂ IPJK)AKAJ = 0 (12)

provide the on-shell symmetries of the action (9)

δXI = PIJ εJ , δAI = −dεI − (
→
∂ IPJK)εKAJ , (13)

which depend on infinitesimal local parameters εI = (εφ, εa, εα). The mixed components

Pαφ are constructed by analogy to Paφ in (7) with the appropriate generator (−γ5/2)
of Lorentz transformations in 2d spinor space. Then dεα in the second set of eq. (13)

acquires an additional term casting it into the covariant (Dε)α, with covariant derivative

D appropriate for a supergravity transformation.
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As the Poisson tensor PIJ is not of full rank, Casimir functions C(Y, φ, χ2) exist which
are the solutions of

{
XI , C} = PIJ∂JC = 0 and thus correspond to conserved quantities

dC = dXI ∂IC = 0 when (11) is used. The bosonic C in supergravity is of the form

C = c+ 1
2
χ2c2 , (14)

where c and c2 are functions of φ and Y only. However, also fermionic Casimir functions

may occur (see below). In the pure bosonic case (χ = ψ = 0) and for the potential (2)

the differential equation for C allows an analytic solution. For instance, c for SRG simply
coincides (up to a factor) with the ADM mass of the Schwarzschild BH. It is interesting,

though, that such a conservation law continues to exist also in interactions with additional

matter contributions [28], i.e. beyond the range of validity of the PSM concept.

The determination of all possible minimal supergravities [29, 7] now reduces to finding the

solutions of the Jacobi identities (10). In the general ansatz for PIJ

Pab = V εab , (15)

Pbφ = Xa εab , (16)

Pαφ = −1
2
χβ(γ5)β

α , (17)

Pαb = χβ(F b)βα , (18)

Pαβ = vαβ + χ2

2
vαβ2 , (19)

the function

V = v(φ, Y ) +
χ2

2
v2(φ, Y ) (20)

contains the original bosonic potential v. As explained above, eqs. (16) and (17) are fixed

by Lorentz invariance. Each one of the (symmetric) spinor-tensors vαβ and vα,β2 in (19)

can be further expanded into three scalar functions of Y and φ, multiplying the symmetric

matrices (γ5)
αβ ,Xa(γa)

αβ ,Xa(γ5γa)
αβ . The quantity (F b)β

α is easily seen to depend on

another set of eight scalar functions. Thus the task to solve the Jacobi identities (10),

which are differential equations, at first sight seems to be quite formidable.

Fortunately, in the course of our extensive analysis [29, 7] it turned out that by starting

from the solutions of the Casimir functions, obeying equations like the one sketched after

eq. (14), the problem, relating the many unknown functions above to the original bosonic

potential v, may be reduced to the solution of algebraic equations.

We have classified the different cases according to the rank of PIJ , when the fermionic
degrees of freedom are included. The bosonic sub-space is odd-dimensional which produced

one Casimir function c. For full “fermionic rank”, i.e. when the rank of vαβ in (19 is two,

the single Casimir function (14) appears and the general solution still depends on five

arbitrary (bosonic) functions of φ and Y beside v.

If the fermionic rank is reduced by one, beside the bosonic Casimir function (14) a fermionic
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one exists. It is of the generic form

C(±) = χ±
∣∣∣∣ X−−X++

∣∣∣∣±1/4 c(±) (φ,X) (21)

and owes its Lorentz invariance to the abelian boost transformation exp(±β) of the light
cone coordinates X±±, related to Xa and exp(±β/2) of the chiral spinor components χ±.
Then the general solution of the gPSM algebra contains four arbitrary functions beside v.

For rank zero of the fermionic extension, i.e. rank three as in the pure bosonic case, in

PIJ beside (14) both fermionic Casimir functions (21) are conserved and three functions
remain arbitrary for a given bosonic potential v.

This arbitrariness can be understood as well by studying reparametrizations of the tar-

get space, spanned by the XI in the gPSM. Those reparametrizations may generate new

models. Therefore, they can be useful to create a more general gPSM from a simpler one,

although this approach is difficult to handle if v in (20) is assumed to be the given starting

point. However, within the present context the subset of those reparametrizations may be

analysed which leaves the bosonic theory unchanged. Again the same number of arbitrary

functions emerges for the different cases described in the paragraphs above.

A generic property of the fermionic extensions obtained in our analysis was the appearance

of “obstructions”. The first type of those consisted in singular functions of the bosonic

variables φ and Y , multiplying the fermionic parts of a supergravity action, when no such

singularities were present in the bosonic part. But even in the absence of such additional

singularities, the relation of the original potential to some prepotential dictated by the

corresponding supergravity theory, either led to a restriction of the range of φ and/or Y as

given by the original bosonic one, or even altogether prevented any extension of the latter.

Remarkably, a known 2d supergravity model like the one of Howe [6] which originally had

been constructed with the full machinery of the superfield technique, escapes such obstruc-

tions. There, in our language, the PSM potential v = −2λ2φ3 permits an expansion in
terms of the prepotential u(φ) through v = −du2/dφ. An example where obstructions
seem to be inevitable is the KV-model [11] with quadratic bosonic torsion.

The hope that a link could be found between the possibility of reducing the arbitariness of

extensions referred to above, and the absence of such obstructions, did not materialize. We

could give several counter examples, including different singular and nonsingular extensions

of SRG.

Another very important point concerns the “triviality”, proved earlier by one of us [27].

It was based upon the observation that locally a formulation of the dynamics in terms

of Darboux coordinates allows to elevate the infinitesimal transformations (13) to finite

ones. Then the latter may be used to gauge the fermionic fields to zero. Providing now

the explicit form of those Darboux coordinates in the explicit solution of a generic model

we also give additional support to the original argument of [27]. However, the appearance

of the obstructions and the ensuing singular factors in the transition to the Darboux co-

ordinates may introduce a new aspect. When those new singularities appear at isolated

points without restriction of the range for the original bosonic field variable, they may be

interpreted and discarded much like coordinate singularities. Another way to circumvent
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this problem in the presence of restrictions to the range and thus to retain triviality is to

allow a continuation of our (real) theory to complex variables. This triviality disappears

anyhow, when interactions with additional matter fields are introduced, obeying the same

symmetry as given by the gPSM-theory. An example for this has been proposed already

in ref. [26].

In order to eliminate the arbitrariness of superdilaton extensions the only viable argument

seems to consist in starting from a supergravity theory in higher dimensions (e.g. D = 4)

and to reduce it (spherically or toroidally) to a D = 2 effective theory. However, the Killing

spinors needed in that case must be Dirac spinors, requiring the generalization of the work

[29, 7] described here to (at least) N = 2, where, however, the same technique of gPSM-s

can be applied.
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T. Klösch and T. Strobl, Class. and Quant. Grav. 14 (1997) 1689; T. Klösch and T. Strobl,
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