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Abstract: Brane actions possess first and second class constraints that result in local

κ symmetry. In a larger phase space the κ symmetry of the D-particle (D0 brane) and

the D1 brane is extended here into a larger symmetry by turning second class constraints

into first class. Different gauge fixings result in different presentations of these systems

while a ”unitary” gauge fixing of the new symmetry retrieves the original action.

1. Introduction

Local κ symmetry on the world-volume is an important ingredient in D-branes dynam-

ics. The history of this symmetry goes back to the superparticle action[1] where it was

identified [2] and applied to the superstring[3] and p-branes in different dimensions[4]. The

role of the κ symmetry was further emphasized in the study of the D-branes embedded in

flat 10D space-time in refs. [5][6]. The symmetry is generated by 16 irreducible first class

fermionic constraints. These constraints are accompanied by another set of 16 second class

fermionic constraints which do not correspond to any local symmetry.

It has been found difficult to quantize covariantly the massless superparticle, as is

the situation also with the Green-Schwarz formulation of the superstring [3] since in both

systems first and second class constraints cannot be separated in a covariant manner. This

is a long lasting problem and many attempts have been made to solve it (e.g. [7][9][10]).

In the massive superparticle action the κ symmetry is explicitly broken. Its first class

constraints are replaced now by second class constraints and the system can be quantized

covariantly by means of Dirac brackets since all its constraints are second class. Since

the massive superparticle can be quantized covariantly, one may be tempted to consider

the massless limit of the massive case as a substitute for the covariant quantization of the
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massless superparticle. However, the Dirac brackets become singular in the p2 = m2 → 0
limit. The restoration of the broken κ symmetry of the massive system in an extended

phase space [8] by adding extra fermionic degrees of freedom was considered in ref. [9].

The restoration of symmetry with no second class constraints, gives the full advantages

of working within a system with local symmetry in particular a covariant wave function

can be formulated also in the massless limit[9]. For this purpose, it is usually useful to

turn the second class constraints into first class. This formulation offers a flexibility to

allow various gauge fixings which are physically equivalent. At the same time, the newly

introduced first class constraints generate a gauge symmetry which may give more insight

into the geometrical structure of the system which is interesting in its own right.

Several other different approaches to this issue share in common the idea of adding

extra dynamical degrees of freedom while extending the symmetry of the system in different

manners [10]-[13].

In ref. [11] we suggested a new symmetric system for the D-particle (D0 brane) and

D1 brane in which the second class constraints are turned into first class in an extended

phase space which includes extra fermionic degrees of freedom. A system was defined in

[11] that contains θα, πα, the original fermionic degrees of freedom of the D0 brane to

which extra fermionic degrees of freedom ζα, ρα are added ( ζα, ρα are Majorana-Weyl

spinors while θα, πα are only Majorana). The new system has, in addition to the original

κ = κ− symmetry a new local κ+ symmetry. The system can be gauge fixed in many
different ways while one of these gauge fixings (”unitary” gauge) retrieves the original D0

brane. We also presented in [11] along the same lines, the D1 brane with an extended

κ− and κ+ local symmetry. We considered the case of a vanishing electric field in the
Born-Infeld-Nambu-Goto action, (namely, (0,1) string ).

2. Superparticle and D-particle

Local κ symmetry is explicitly broken in the N=1 massive superparticle action in d=10

dimensions [9]:

S =

∫ τf
τi

L(τ)dτ =
∫ τf
τi

dτ{− 1
2e
(ẋµ − iθ̄+Γµ ˙θ+)2 + 1

2
em2} (1)

Under the local κ− transformation:

δxµ = iθ̄+Γµδθ+ , δθ+ = (ẋ
ν − iθ̄+Γν θ̇+)Γνκ− , δe = 4ie ˙̄θ+κ− (2)

one finds δL = 2iem2 ˙̄θ+κ− 6= 0 (for detailed notations see ref.[11]). All 16 constraints
are second class and its phase space has (32 − 16 =)16 independent fermionic degrees
of freedom. A possible modification by which the local κ− symmetry can be restored is
extending its phase space to N=2 while adding an appropriate Wess-Zumino term.

L = − 1
2e
(ẋµ − iθ̄Γµθ̇)2 + 1

2
em2 + L2 (3)

Here θ = θ+ + θ− (θ is a Majorana spinor and θ+ and θ− are Majorana-Weyl spinors
of opposite chirality) and L in Eq.(3)has a restored κ− symmetry. The system has now
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not only 16 first class constraints but also 16 second class constraints and the number of

independent degrees of freedom in phase space is the same as the N=1 massive superparticle

(64 − 2× 16 − 16 = 16)
A very appealing point of view on L(τ) of Eq.(3) is obtained when one starts with the

massless superparticle action in d=11 dimensions which is given by ([1]-[3]):

S =

∫ τf
τi

L(τ)dτ = −1
2

∫ τf
τi

dτe−1(ẋm̂ − iθ̄Γm̂θ̇)2 (4)

where xm̂ (m̂ = 0, 1...10) are the space-time coordinates and θα = θ+α+θ−α(α = 1, 2...32)
are the corresponding fermionic coordinates which can be regarded as two Majorana Weyl

spinors of opposite chiralities, if viewed as spinors in ten dimensions.

When one of the space directions is compactified to a radius of R = m−1 = Z−1, the
d=11 massless superparticle action results [6] in the D0 brane action.

S =

∫ τf
τi

L(τ)dτ =
∫ τf
τi

dτ{− 1
2e
(ẋµ − iθ̄Γµθ̇)2 + 1

2
eZ2 − iZθ̄Γ11θ̇ }

+Z[x10(τf )− x10(τi)] (5)

Where p10 was set to p10 = m = Z , Γ
1̂0 is defined as Γ11 and µ = 0, 1...9 . The D0

brane action in Eq.(5) is similar to the action in Eq.(3) and its Wess-Zumino term Zθ̄Γ11θ̇

establishes the local κ− symmetry, which is the original symmetry of the d=11 massless
superparticle action. Thus, instead of 32 second class constraints as in the N=2, d=10

massive superparticle action, the D0 has 16 first class constraints and 16 second class con-

straints which is the same number of constraints as the massless N=2, d=10 superparticle

and here too the 16 first class constraints result in κ− symmetry. An important difference
between the D0 action and the massless superparticle is the fact that in the D0 case the

first and second class constraints can be separated in a covariant manner[6], this cannot

be done for the massless N=2 d=10 superparticle.

In ref [11] we treated the D0 system in a more symmetrical manner by turning also

its remaining 16 second class constraints into first class. The resulting system has in

addition to the original κ− symmetry also a κ+ symmetry generated by the new first class
constraints.

The first and second class constraints that result from the action in Eq. Eq.(5) can be

covariantly separated by defining [6]:

T̄1 = T̄ (6p + ZΓ11)(1−Γ112 ) = π̄− 6p− Zπ̄+ + iθ̄+(p2 + Z2) (6)

and T̄2 = T̄ (
1+Γ11

2 ) = π̄− + iθ̄+ 6p+ iZθ̄−
as seen from their Poisson bracket relations ( we also have the constraint p2 + Z2 = 0).

The extended phase space is now defined by adding ρ− and ζ+ , a canonical pair of
Majorana-Weyl spinors representing extra 32 fermionic degrees of freedom whose Poisson

bracket is: [ρ̄−α, ζ+β] = 1
2(1+Γ

11)αβ . The dynamics in the extended phase space is defined

by the two opposite chirality sets of constraints T̄+, T̄
′− and their Poisson bracket:

T̄1 ≡ T̄+ = π̄− 6p− Zπ̄+ + iθ̄+(p2 + Z2) , T̄ ′− = π̄− + iθ̄+ 6p+ iZθ̄− − iρ̄− + ζ̄+ 6p . (7)
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The Poisson brackets of the two chiral multiplets of these first class constraints in the

extended phase space are:

[T̄+α, T̄+β ] = −2i(p2 + Z2)
(
Γ0(
1 + Γ11

2
)6p
)
αβ

, [T̄+α, T̄
′
−β] = −2i(p2 + Z2)

(
Γ0(
1 + Γ11

2
)

)
αβ

(8)

and [T̄ ′−α, T̄ ′−β ] = 0. The total extended phase space hamiltonian is HT = H0 +
1
2λp(p

2 +

Z2) + T̄+λ− + T̄ ′−λ+ , where H0 = −12e(p2 + Z2). The generator of κ− and κ+ gauge
symmetries and reparametrization is: G = εeπe +

εp
2 (p

2 + Z2) + {π̄− 6p − Zπ̄+ + iθ̄+(p2 +
Z2)}κ− + {π̄− + iθ̄+ 6p+ iZθ̄− − iρ̄− + ζ̄+ 6p}κ+
We started with 16 fermionic degrees of freedom in phase space(64−16×2−16), extra

32 degrees of freedom (ρ−, ζ+) were added and the κ+ symmetry was introduced. We have
now 16 independent degrees of freedom as in the original system (64+32−16×2−16×2 =
16 + 16decoup.) while the other 16decoup. are the ”Batalin-Fradkin decoupled” [11] degrees

of freedom.

In the extended symmetry system, in addition to the possible gauge fixing (e.g. [6])

that eliminates the θ− degrees of freedom by fixing the κ− gauge, other gauge fixings are
acceptable as well. Clearly, a properly chosen gauge fixing ( ”unitary” gauge fixing) of the

new κ+ symmetry will eliminate the linear combination of the new fermionic degrees of

freedom −iρ̄− + ζ̄+ 6p. For example a possible unitary gauge fixing is θ− = 0 and − iρ̄− +
ζ̄+ 6p = 0. This results in the same gauge fixed system that was used in [6]. A different,
interesting, gauge fixing that eliminates the old degrees of freedom and leaves only the

new 16 degrees of freedom is simply, θ− = 0 and θ+ = 0. The gauge fixed D0 system is
given in this gauge in terms of the new coordinates −iρ̄−+ ζ̄+ 6p only. As in the case of the
unitary gauge the Poisson bracket matrix [T̄±α, χ±β ] between the constraints T̄+α, T̄ ′−α and
the gauge fixing conditions χ− = θ−, χ+ = θ+ is not singular since p2+Z2 = 0. Of course,
other combinations of κ− and κ+ gauge fixings are also possible.

3. D1 brane with κ− and κ+ extended symmetry

Following along similar lines we presented in [11] the extension of this derivation to

the case of a D1 brane. It results in a system with κ− and κ+ symmetry. The action of the
D1 brane consists of the Born-Infeld-Nambu-Goto term and the Chern-Simons two form

Ω2 term [5]

S =

∫
L(σ)d2σ = −T

{∫
d2σ
√
−det(Gµν + Fµν) +

∫
Ω2

}
(9)

where Gµν is the supersymmetric induced world-volume metric and Fµν is the supersym-
metric Born-Infeld field strength (we will suppress the indices A = 1, 2 of θAα when it is

easily recognized). From Eq.(9) one finds the fermionic constraints Φ̄Aα

Φ̄α = π̄α + (θ̄ 6p)α − (θ̄ΓmTE)α(∂1xm) + (θ̄Γm∂1θ)(θ̄ΓmTE)α = 0 (10)

where TE = E
1τ3+Tτ1 (E

1 is the electric field and τk are Dirac matrices). The constraints

in Eq.(10) can be separated covariantly into first class and second class constraints:

T̄1α =

(
Φ̄(6p̃ − 6ΠTE)(1 + τ3

2
)

)
α

, T̄2α =

(
Φ̄(
1− τ3
2
)

)
α

(11)
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The Poisson bracket [T̄1α, T̄1β ] vanishes on the constraints hyperplane. These 16 first class

constraints T̄1α generate the local κ symmetry of the D1 brane. On the other hand T̄2α are

16 second class constraints [T̄2α, T̄2β ] = 2(Γ
0 6Pτ−)αβδ(σ − σ′) where Pm = p̃m + E1Π1m =

pm + θ̄ΓmTE∂1θ + E
1(∂1xm − θ̄Γm∂1θ)

The condition G11 6= 0 is essential for separating the first and second class constraints
and the covariant quantization of the D1 system. In Ref.[6] it has been emphasized that in

the static gauge (where xµ = σµ for µ = 0, 1) indeed G11 6= 0 and the implications of this
fact on the ground state spectrum was discussed there. Since the static gauge is a natural

gauge for D1, we follow this point of view.

We defined in [11] the D1 brane system in an extended phase space that includes in

addition to the 64 fermionic degrees of freedom θAα and π
A
α extra fermionic 32 degrees of

freedom that satisfy[ρ̄Aα (σ), ζ
B
β (σ

′)] = δ(σ− σ′)τAB− δαβ The constraints of this new D1 sys-
tem T̄ ′α

A
(x, p, θ, π, ζ, ρ) were obtained in a similar way the constraints in the extended phase

space for the Dparticle . Namely, T̄ ′A1α(x, p, θ, π, ζ, ρ) = T̄A1α(x, p, θ, π) is left unchanged and
does not depend on (ζ, ρ) whereas the other constraint TA2α is modified as

T̄ ′A2α(x, p, θ, π, ζ, ρ) = T̄
A
2α(x, p, θ, π)− ρ̄Aα + (ζ̄B 6P )ατBA− (12)

which depends on (ζ, ρ) and satisfies the Poisson bracket relation:

[T̄ ′2α, T̄
′
2β ] = −2E1δ(σ − σ′)

(
2(Γ0Γm)αβ(ζ̄Γmτ−∂1θ)− (ζ̄Γm)α(∂1ζ̄Γmτ−)β

)

−2E1∂δ(σ − σ
′)

∂σ′
(ζ̄Γm)α(ζ̄Γmτ−)β (13)

In the case of E1 = 0 the new system has only first class constraints and local symmetries

κ1 and κ2 generated by T̄1α and by T̄
′
2α respectively. The symmetric system phase space is

given by the coordinates θAα (σ), π
A
α (σ), ρ

A
α (σ) and ζ̄

B
β (σ) where the number of independent

fermionic degrees of freedom has not been changed. Namely, we started with 2× 32− 2×
16− 16 = 16 independent fermionic degrees of freedom in phase space and in the extended
phase space we have 3× 32− 2× 32 = 16+16decoup. degrees of freedom where the 16decoup.
degrees of freedom are ”Batalin Fradkin decoupled” [9] leaving 16 independent fermionic

degrees of freedom.

We noted that setting E1 = 0 means also that F01 = 0 which results in the Lagrangian
of Eq.(9) to be very similar to the Green-Schwarz string. Namely, using the equation of

motion one notices that the D1 action in Eq.(9) with E1 = 0 is identical to the Green-

Schwarz action when τ3 is replaced by τ1. Since we are using the static gauge as a natural

gauge for D1 [5], the massless modes are projected out. This relates the physics of the

type IIB fundamental string and the D1 system in the static gauge [6]. We also note that

the electric field E1 is quantized and represents the number of fundamental string bound

to the D1 brane producing (n,m) string [15][16]. Therefore we have succeeded to extend

the system where all the second class constraints are turned into first class constraints at

least for the case of the (0, 1) string, namely the genuine D1 brane without F1 provided

the massless modes are projected out by using, for instance, the static gauge.

Work supported in part by the Israeli Science Foundation and the Technion VPR fund.
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