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Abstract: The consequences of certain simple assumptions like smoothness of ground

state properties and vanishing of the vacuum energy (at least perturbatively) are explored.

It would be interesting from the point of view of building realistic theories to obtain these

properties without supersymmetry. Here we show, however, at least in some quantum

mechanical models, that these simple assumptions lead to supersymmetric theories.

1. Introduction

One may wonder why it is so that the energy spectrum of nature – locally, i.e. ignoring

gravity – seems to have a bottom, but no top. Having in mind that there are many

parameters – coupling constants – which are so far not understood in the sense that we

do not have any theory telling why they should just be what they are, one may ask: If

we varied these parameters/couplings , would the bottom perhaps disappear? Would the

energy density of the ground state – essentially the cosmological constant – remain small?

It is of course well known that SUSY theories give zero energy for the ground state and

have been therefore considered as the possible key to the solution of the small cosmological

constant problem (see [1] for a recent review). SUSY was also shown to have very simple

smoothness properties (see e.g. [2]). However it is not obvious that there are no non-

supersymmetric field theories with such properties. In fact, that would be even desirable

from the point of view of building realistic models. Recently there was such an attempt.

More precisely, a nonsupersymmetric string theory was presented which was argued to

have vanishing cosmological constant [3] (see also [4, 5]). However, the claims in [3] were

criticised by Iengo and Zhu [6].
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In order to understand if non-SUSY theories with such properties exist, here we propose

to investigate the opposite. We want to start from some simple assumptions, like vanishing

of vacuum energy and/or certain smoothness properties of ground state, and to consider

which interactions are allowed with these requirements. We shall see that such assumptions

will (at least in cases considered in this paper) lead us from bosonic theories to SUSY

theories with fermion degrees of freedom.

For a simplest example of the above ideas let us consider the harmonic oscillator. The

ground state energy is Eg = |~ω|/2, which is not analytic when ~ (or ω) is passing zero. The
“minimal” way to make it smooth is to double the number of deegres of freedom and add to

Hamiltonian a term ~ωσz/2. What one obtains is exactly N=2 SUSY harmonic oscillator.

This argument perturbatively generalises to arbitrary one-dimensional QM model.

Another example is obtained when one considers bosonic D-dimensional QM system

with several classical vacua of vanishing energy. Trying to keep perturbatively this property

in quantum case by changing the Hamiltonian in a “minimal” way for a generic choice of

coupling constants, one is led to SUSY QM [8].

In the main part we take yet another route. We shall start from QM on compact

configuration spaces and assume that the classical limit shall work (perturbatively) even

when formally continuing to negative ~. Since wave packets representing classical states

tend to jump around under ~-changing-sign continuation, we are suggested to identify

in the classical interpretation the startpoint and the endpoint for such jumps. Thereby

strong classical symmetry between different points in configuration space is to be imposed

to uphold the good classical limit and that is how both an effective fermionic degree of

freedom and SUSY comes in, unavoidably.

2. “Als ob” fermions from bosons

We consider particle moving in D-dimensional compact Riemann space with the Hamilto-

nian given with

H = −~2∇2 + V (q)
where q = (q1, . . . , qD) are coordinates, and ∇ the covariant derivative. The potential V (q)
can be written [9] in the form of Riccati equation

V (q)− Eg = (∇W (q))2 − ~∇2W (q) (2.1)

where Eg is the ground state energy, and W (q) is connected to the ground state wave

function ψg(q) with W (q) = −~ lnψg(q). We want again for our system to have “smooth”
classical limit, so we take V (q), Eq and W (q) to be “expandable” in ~, e.g.:

W (q) =

∞∑

n=0

~
nW (n)(q) (2.2)

and simmilar for V (q) and Eq. This leads us to two statements proved in [8]:

Statement 1. The classical potential V (0)(q) has at least two equally deep minima, i.e.,

there exists at least two points qi for which V
(0)(qi)−E(0)g = 0. More precisely, number of

these classical minima is equal to the number of critical points of W (0)(q).
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Statement 2. Main concentration of probability for the ground state (measured by

|ψg(q)|2) will jump from around the global maximum to around the global minimum of
W (q) when ~ is continously passing by ~ = 0.

It is the crux of our “derivation” of (need for) SUSY that we declare:

Such a “jumping” under ~ passing ~ = 0 (from ~ > 0 to ~ < 0) means that the classical

limit is not good (i.e., “smoothness assumptions” are violated)!

Our “solution” to the jumping-of-states-to-different-minimum-of-V -problem is pro-

posed as:

We propose to change the classical configuration space by putting together to one point

so many points as are needed to have all the “jumps” for ~ → −~ occur between original
q-points now identified to be interpreted as only one point.

If we want to have classical physics not to distinguish the points to be identified – say

we identify q → f(q) – then at least to classical approximation we must have

1. The map f : configuration space → configuration space being an isometry for the
metric gab(q) of the kinetic term.

2. V (f(q)) = V (q)

We expect that additional variables, introduced to denote different (bosonic) configu-

rations which are classically indistinguishable, will behave as fermionic degrees of freedom,

at least locally around classical vacua, or in perturbative expansion.

2.1 Example: a circle

As a simple example of the above ideas, let us consider one dimensional particle on a flat

circle1. The Hamiltonian is now

H = p2 + V (q) (2.3)

where q ∼ q + 4π (we denote the configuration space S14π). In the simplest case there are

two classical vacua. It follows that there are only two possible isometric maps f

f(q) = q + 2π (mod 4π) (2.4)

f(q) = 2π − q (mod 4π)

(this follows from f(f(q)) = q (mod 4π)). By arguing about a slightly pushed ground

state – a superposition of the ground state and first excited state – we may argue for (2.4).

If we take for granted that the points on the S14π to be identified are q ↔ f(q) we may

look for an operator Q that maps the state ψ : S14π → C into the another state localized at
“same classical points” (but at different q, namely f(q)). More precisely, we want that if ψ

is a q̂-eigenstate, say ψ(q) = δ(q−q0), then Qψ should be nonzero only at f(q0). Using this
“locality” of Q we argue that it is of the form Q = P (p̂)“σx”, where “σx” ≡ exp(i2πp̂/~)
is the translation operator by 2π, and P is a finite polinomial in p̂ (so it can only make

infinitesimal translations).

1In one dimension all metric tensor fields can be made trivial, i.e. g11 = 1, by appropriate choice of

coordinate.
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From the requirement that the classical potential V (0)(q) is periodic with period 2π,

follows thatW (0) must be antiperiodic2 with period 2π. We now assume the same property

for the full W . From that follows

{“σx”,W (q̂)} = 0, (“σx”)
2 = 1 (“σx”)

† = “σx” (2.5)

Now if we take for Q

Q = Q† =
(
p̂+ iW ′(q̂)

)
“σx” (2.6)

from (2.1) and (2.5) follows that Hamiltonian (2.3) takes the form

H =
1

2
{Q,Q}+ Eg = Q2 + Eg (2.7)

If we could find fermion number operator F such that (−1)F anticommutes with Q, we
could say that our starting purely bosonic system can be written as supersymmetric. This

is our next task.

Locally in q, or perturbatively, we define a fermion number F so that

(−1)F = “σz” (2.8)

where “σz” is defined for the neighbourhoods (of trivial topology) of critical points of

W (q) (which are near classical vacua for ~ small) in the following way. Denote by qg
minimum of W (q) and arrange that 0 < qg < 2π. Because of the 2π-antiperiodicity of W

we know that maximum of W is at f(qg) = qg + 2π. Now, equivalence q ∼ f(q) reduces

classical configuration space from S14π to S
1
2π = S14π/Z2. Because quantum corrections

break the equivalence, beside “classical position” q̄ ∈ [0, 2π] we need another discrete
degree of freedom which tells us in which of the classically equivalent points (q̄ or q̄ + 2π)

particle is. More formaly, we split the wave function ψ(q), q ∈ [0, 4π〉 in two components
ψ(q̄, σ), q ∈ [0, 2π], σ = ±1 in the following way

ψ(q̄, 1) ≡ ψ(q̄), ψ(q̄,−1) ≡ ψ(q̄ + 2π), q̄ ∈ [0, 2π] (2.9)

From the definition of “σx” follows “σx”ψ(q) = ψ(q + 2π), so we have “σx”ψ(q̄, σ) =

ψ(q̄,−σ). We can now define operator “σz” such that

“σz”ψ(q̄, σ) = σψ(q̄, σ) (2.10)

Obvious properties of “σz” are

{“σz”, “σx”} = [“σz”, p̂ ] = [“σz”, q̄ ] = 0, (“σz”)
2 = 1, (“σz”)

† = “σz”

From that, (2.6), and (2.8) trivially follows

{(−1)F , Q} = {“σz”, Q} = 0
2We want two different classical minima.
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Finally, using q̄ and “σz” instead of q, we can formally write Hamiltonian (2.3) in the

standard N = 2 SUSY form

H = p̂2 +
(
W ′(ˆ̄q)

)2 − ~W ′′(ˆ̄q)“σz” + Eg = Q2 + Eg (2.11)

Now, above result is certainly not true and it is easy to find where we cheated. Splitting

of configuration space (2.9) imposes specific boundary conditions

ψ(2π, σ) = ψ(0,−σ), ψ′(2π, σ) = ψ′(0,−σ)

which are obviously incompatible with the definition of “σz” (2.10). But, if we restrict

ourself to low energy perturbation theory around classical minimum, then boundary condi-

tions became irrelevant and we can consider our purely bosonic system to behave as N = 2

SUSY theory (2.11).

The same thing can be seen looking at the “smoothness” properties of “σz”. From its

definition we can see that when it acts on eigenvectors of q̂, its eigenvalue jumps from 1

to −1 when q passes 2π. From that we can conclude that “σz”, and so fermion number F
also, can be defined only locally around classical minima.

3. Conclusion

Previous analysis would suggest that certain simple assumptions like smoothness of ground

state properties in ~ or vanishing of ground state energy would require supersymmetry.

That would mean that it is very difficult to avoid SUSY and if that is necessary because

of phenomenological reasons one has to abandon also previously mentioned properties.
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