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Abstract: This paper addresses the soliton dynamics in a Toda lattice with a randomly

distributed chain of masses. Applying the inverse scattering transform we derive effective

equations for the decay of the soliton amplitude that take into account radiative losses.

The decay rate does not depend on the incoming energy for large amplitude soliton. An

important feature is the generation of a soliton gas consisting of a large collection of small

solitons. The soliton gas plays an important role in that the changes in the conservation

equations cannot be correctly understood if the soliton production is neglected.
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1. Introduction

The propagation of nonlinear waves in disordered media was recently the subject of many

investigations. The joint action of the disorder and nonlinearity leads to many new effects

in wave dynamics [1, 2]. One of them is the competition between the Anderson localization

effect and the localization effects due to the existence of solitons in nonlinear systems.

In linear systems the disorder typically leads to the localization of the wave - the

phenomenon first predicted by Anderson for the electron in the disordered lattice [3]. The

characteristic scale is the localization length LA, characterizing the decay of wavefunction.

Later it was shown that this phenomenon can exists for many type of excitations in quantum
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physics and waves in classical physics, like electromagnetic waves [4], acoustical waves [5]

etc.

In nonlinear disordered systems solitons start to play the important role. With solitons

the additional scale connects: a nonlinearity length LNL. The competition of these scales

is responsible for the existence of the mass threshold in envelope solitons propagation in

random media. Below this threshold the nonlinear wave decay exponentially, above them

solitons lose the mass very slowly [2, 6].

In nonlinear discrete media numerical simulations shows the existence of power type

decay of solitons. Such results has been observed for the nontopological kink-type soliton in

random masses anharmonic lattice with nonlinear nearest-neighbor interaction of quartic

type - the random Fermi-Pasta-Ulam (FPU) chain[7], in the same type of lattice with

disorder in the force constants of harmonic and anharmonic potentials [8]. The decay law

for the transmission coefficient of the leading soliton is T1 = Eout/Ein ∼ 1/
√
N (where E

is the soliton energy) has been obtained.

Analogical investigation has been performed for the random Toda lattice in [9, 10]. Two

kinds of particles with the different masses were randomly distributed along an impurity

segment. For the soliton energy it is found that the dependence of the transmission rate

T1 can be fitted quite well by 1/(1 + αN
β), whith β ≈ 1.2 for the wavenumber equal 1

in the dimensionless variables. It is also shown that the decay rate as a function of the

wavenumber of the incident soliton can be represented by a Lorentzian function for small

wavenumbers and tends to a finite value in the large wavenumber limit.

Theoretical description of these phenomena involves models with a dilute system of

impurities, when the distance between impurities are larger then the soliton width and

each interaction of soliton with impurity can be considered as the individual one [7, 2].

Another approach consists in the using of the continuum approximation, and studiyng the

stochastically perturbed wave equations. In the work [11] this approach has been applied to

the random FPU and decay law for the soliton amplitude 1/
√
N has been derived. But this

consideration, considering only the broad solitons, use indeed the mean field theory and

neglect by the radiation phenomena that are important for the long distance propagation

in random chain and in generally is questional for the nonlinear waves in random media

[12].

The random extension of the discrete NLS equation type model - the random Ablowitz-

Ladik (AL) model with random on site potential has been stuided in [13], where the

decay law of AL soliton has been found. In this work we will consider the problem of the

discrete nontopological kink type soliton propagation in disordered lattice on the example

of the random Toda lattice. Few motivations exist for the consideration of this model.

First, the Toda model is interesting from the applications point of view and appears in

many problems of the condensed matter and nonlinear optics [14, 15, 16]. Second, the

unperturbed Toda model is the integrable system [17, 15] so the dynamics of solitons

under random modulations of lattice parameters can be studied using for example the

perturbation theory based on the Inverse Scattering Transform. Last method admits to

calculate the effects of radiation on the propagation of discrete soliton.

In this paper we shall consider the Toda chain with a segment containing random
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masses. The length of the segment of the chain with random masses is assumed to be long

∼ 1/ε2, where ε is the perturbation amplitude. In comparison with the random AL chain
new phenomena are here possible. One of them is the generation of a soliton gas in the

Toda chain driven by a random perturbation.

The paper is organized as follows. In the second section we give a review of the homo-

geneous Toda chain and an introduction to the inverse scattering transform (IST) that is

necessary to analyze the long distance evolution of the Toda lattice soliton driven by a ran-

dom perturbation. In the third section we derive the evolution equations for the scattering

data under random perturbations and the equations for the soliton parameters taking into

account the radiative losses. We analytically study the decay law of the discrete soliton

and we exhibit different regimes depending on the soliton parameter and the correlation

length of the medium.

2. The homogeneous Toda chain

The model consists of a one-dimensional chain of particles. Each particle with mass 1

interacts through a nearest neighbor exponential potential. The difference equation that

governs the dynamics of a one-dimensional lattice with exponential interaction of nearest

neighbors is deduced from Newton’s law [15]:

ẍn = exp(xn+1 − xn)− exp(xn − xn−1), (2.1)

where xn is the longitudinal displacement of the n-th particle from its equilibrium position.

The Hamiltonian of this system is:

H0 =
∞∑

n=−∞

1

2
ẋ2n + (exp(xn − xn−1)− (xn − xn−1)− 1) . (2.2)

In this section we give a review and extend the main results reported in [17].

2.1 Direct scattering transform

Equation (2.1) can be rewritten as:

ċn = cn(vn − vn−1), v̇n = cn+1 − cn,
where cn = exp (xn − xn−1) and vn = ẋn. The eigenvalue problem for the continuous

spectrum filling the interval −2 ≤ λ ≤ 2 reads:
√
cn+1fn+1(k) +

√
cnfn−1(k) + vnfn(k) = λfn(k), λ = k + k−1,

where k is the spectral parameter that lies in the unit circle S1 := {k ∈ C, |k| = 1}. The
Jost functions ψ and φ are the eigenfunctions that satisfy the boundary conditions:

ψn(k)
n→∞' kn, φn(k)

n→−∞' k−n.

The Jost coefficients are connected to the Jost functions through the identities:

φn(k) = a(k)ψ
∗
n(k) + b(k)ψn(k), ψn(k) = a(k)φ

∗
n(k)− b∗(k)φn(k).
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The Wronskian of two functions f and g is defined by:

W (f, g) :=
√
cn (fngn−1 − fn−1gn) .

Calculating the Wronskian of φ and ψ yields:

W (φ,ψ) = a(k)W (ψ∗, ψ) = a(k)(k−1 − k).

Another important point as we shall see in the following is that a admits an analytic

continuation inside the unit disk. Finally symmetry identities hold true:

a∗(k) = a(1/k), b∗(k) = b(1/k), |a(k)|2 − |b(k)|2 = 1.

The points on the real axis kr, r = 1, ..., R , |kr| < 1, at which a(kr) = 0 correspond
one-to-one with eigenvalues of the discrete spectrum. At these points we have:

φn(kr) = brψn(kr), Im(br) = 0.

Setting ρr = br/a
′(kr), the set of scattering data

{
a(k), b(k), k ∈ S1, kr, ρr, r = 1, ..., R

}
is

sufficient to reconstruct the Jost functions and the function (xn).

2.2 Inverse scattering transform

Given the set of scattering data, set:

Ω(n) = −
R∑
r=1

ρrk
n
r +

1

2iπ

∮
γu

b(k)

a(k)
kndk,

where γu is the positively oriented unit circle. The inverse scattering transform consists in

solving the Gel’fand-Levitan-Marchenko (GLM) equation for the kernel K:

K(n,m) + Ω(n+m) +

∞∑
l=n

Ω(l +m+ 1)K(n, l) = 0.

Then the function cn and vn are given by:

cn =
1−K(n− 1, n − 2)
1−K(n, n− 1) , vn = K(n, n)−K(n− 1, n − 1).

2.3 Time evolution equation

The time evolution equations of the scattering data are simple and uncoupled. For any

t ≥ t0,

a(k, t) = a(k, t0), |k| = 1,
b(k, t) = b(k, t0) exp(ω(k)(t − t0)), |k| = 1,
ρr(t) = ρr(t0) exp(ω(kr)(t− t0)), r = 1, ..., R,

where ω(k) = k − 1/k.
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2.4 Soliton

The scattering data of a pure soliton are (q0 > 0, ε0 = ±1):

a(k) = ε0
k − k0
kk0 − 1 , b(k) = 0, k0 = ε0 exp(−q0), (2.3)

ρ0 = exp(2q0n0(t)) sinh(q0), n0(t) = n0(0) − ε0 sinh(q0)/q0t. (2.4)

The corresponding solution is:

xn(t) = − ln
[
1 +

eq0 sinh(q0)

cosh(q0(n− n0(t)))e
−q0(n−n0(t))

]
. (2.5)

The soliton momentum and energy are:

M0 = 2ε0 sinh(q0), H0 = 2 (sinh(q0) cosh(q0)− q0) .
Note that the soliton solution is negative-valued. Its velocity is negative (resp. positive) if

the zero k0 is positive (resp. negative). The Jost functions for the soliton are:

ψn(k) = k
nA−1/2n

1− kk0An
1− kk0 , φn(k) = −ε0k−nA−1/2n

k − k0An
1− kk0 ,

where An = (1 + k
2n−2n0−2
0 )/(1 + k2n−2n00 ).

2.5 Conserved quantities

Conserved quantities can be worked out as in any integrable system. The quantities

I0 = −1
2

∞∑
n=−∞

log(cn), I1 = −
∞∑

n=−∞
vn, I2 =

∞∑
n=−∞

1− cn − 1
2
v2n

are three of the infinite number of conserved quantities for the homogeneous Toda chain.

The first integral of motion is proportional to the total displacement limn→+∞ xn−limn→−∞ xn =
−I0/2. The second integral of motion is proportional to the momentum:

∑∞
n=−∞ ẋn = −I1.

Finally the Hamiltonian (2.2) can be expressed as a combination of the first and third inte-

grals of motion H0 = −I2 + 2I0. The derivation of the set of conserved quantities is based
on the series expansion of the analytic function a(k) as k → 0:

log a(k) '
∞∑
j=0

Ijk
j, (2.6)

where the Ij are time-independent. The conserved quantities can be expressed in terms of

the scattering data. Defining n(k) := − log
(
1− |b|2(k)|a|2(k)

)
for k ∈ S1, the integrals of motion

Ij can be decomposed into the sums of continuous and discrete parts:

I0 =
1

4iπ

∮
γu

n(q)

q
dq +

R∑
r=1

log |kr|, (2.7)

Ij =
1

2iπ

∮
γu

n(q)

qj+1
dq +

1

j

R∑
r=1

kjr − k−jr , j ≥ 1. (2.8)
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3. Propagation with an impure segment

3.1 Perturbation model

We assume from now on that the masses of the particles are not equal:

mnẍn = (exp(xn+1 − xn)− exp(xn − xn−1)) , (3.1)

where mn is the mass of the particle at site n. A finite segment of impure masses is

embedded into a homogeneous infinite chain:

mn =

{
1 for n ≤ 0 and n ≥ N ε + 1,
1 + εVn for 1 ≤ n ≤ N ε, (3.2)

where the small parameter ε ∈ (0, 1) characterizes the amplitude of the perturbation.
(Vn)n∈N is a chain of identically distributed random variables . They are zero-mean 〈Vn〉 =
0; they possess finite moments; the chain is stationary so 〈V0Vn〉 = 〈VmVm+n〉. We may
think for instance at the discrete white noise, where the random variables Vn are statistically

independent 〈VmVn〉 = 0 if m 6= n with the variance σ2 =
〈
V 2n
〉
. We may also consider

a colored noise with a Gaussian autocorrelation function 〈V0Vn〉 = σ2 exp(−n2/l2c) with
variance σ2 and correlation length lc.

The length of the impure segment N ε is assumed to be large, of the order of ε−2, and
we set N ε = [l0/ε

2]. We introduce the slow variable l as n = [l/ε2]. Here the brackets stand

for the integral part of a real number. We assume that a pure soliton is incoming from

the left. The parameter of the soliton is k0 = −e−q0 . Note that the total displacement,
momentum and Hamiltonian are preserved:

D = lim
n→+∞xn − lim

n→−∞xn, (3.3)

M =

∞∑
n=−∞

mnẋn, (3.4)

H =
∞∑

n=−∞

1

2mn
ẋ2n + (exp(xn − xn−1)− (xn − xn−1)− 1) . (3.5)

3.2 Evolution of the scattering data

Let us consider a general form:

ċn = cn(vn − vn−1) + εRn, v̇n = cn+1 − cn + εSn.

We get the perturbation model (3.1) from this general form by setting Rn = 0 and Sn =

Vn(cn+1 − cn). In such conditions the Jost coefficients satisfy the coupled equations:
da

dt
= ε

1

k − k−1 (γ̃(k)a+ γ(k)b) , (3.6)

db

dt
= ω(k)b− ε 1

k − k−1 (γ
∗(k)a+ γ̃(k)b) , (3.7)

– 6 –
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where

γ(k) =
∑
n

ψn(k)

(
Rn

2c
1/2
n

ψn−1(k) +
Rn+1

2c
1/2
n+1

ψn+1(k) + Snψn(k)

)
, (3.8)

γ̃(k) =
∑
n

ψ∗n(k)

(
Rn

2c
1/2
n

ψn−1(k) +
Rn+1

2c
1/2
n+1

ψn+1(k) + Snψn(k)

)
. (3.9)

The presence of the factor (k − k−1)−1 in Eqs. (3.6-3.7) is important. It means that a
resonance exists close to the value k = 1, and thus small solitons are likely to be generated,

as was observed for the random Korteweg-de Vries (KdV) equation [18].

The strategy we shall develop is based on the inverse scattering transform. The random

perturbation induces variations of the spectral data. Calculating these changes we are able

to find the effective evolution of the field and calculate the characteristic parameters of the

wave. We are interested in the effective dynamics of the soliton propagating through large

impure segments with length N ε = [l0/ε
2]. The total energy is conserved but the discrete

and continuous components evolve during the propagation. The evolution of the continuous

component corresponding to radiation will be found from the evolution equations of the

Jost coefficients. The evolution of the soliton parameter will then be derived from the

conservation of the total energy. However this approach turns out to be a little more tricky

than expected because of the generation of new solitons.

3.3 Convergence of the soliton parameter

We can now state the main result of the paper. The proof follows closely the strategy

developed in Ref. [18] in the KdV framework and details will be published separately. For

the statement we need to define the concept of soliton gas in our framework. A soliton gas

is a collection of solitons whose total energy goes to zero as ε → 0 while the sum of their
momenta is non-zero.

Proposition. The following event has a probability which goes to 1 as ε → 0: the wave
scattered by a large impure segment with length [l/ε2] consists of one main soliton with

parameter qε(l), a soliton gas, and radiation. The process (qε(l))l∈[0,l0] converges in prob-
ability to the deterministic function (qs(l))l∈[0,l0] which satisfies the ordinary differential
equation:

dqs
dl
= F (qs), (3.10)

where

F (q) = − 1
4π

∫ 2π
0

C2(q, θ)R̂(2K(q, θ))
sin2(θ)

sinh2(q)
dθ, (3.11)

C2(q, θ) is the normalized energy density scattered by the soliton with parameter q per unit

distance for a discrete white noise:

C(q, θ) = π
sin
(
θ − q sin(θ)sinh(q)

)
sinh

(
π sin(θ)
sinh(q)

) , (3.12)
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R̂(κ) is the discrete Fourier transform of the autocorrelation function of (Vn)n∈N

R̂(κ) =
∞∑

n=−∞
〈V (0)V (n)〉 cos(κn), (3.13)

K(q, θ) is the wavenumber

K(q, θ) = θ − q sin(θ)

sinh(q)
. (3.14)

The first assertion of the proposition means that the event “the transmitted wave consists

of one soliton plus some other small amplitude wave” occurs with very high probability for

small ε, while the second assertion gives the effective evolution equation of the parameter of

the transmitted soliton in the asymptotic framework ε→ 0. Note that R̂ is a positive real-
valued (Wiener-Khintchine theorem). In case of a discrete white noise R̂(κ) is a constant

equal to the variance σ2.

The scattered wave consists of one main soliton (with parameter qs of order 1), a

soliton gas (with quasi-zero energy but non-zero momentum), and radiation (associated

with the continuous spectrum). The induced displacement, momentum and energy of the

radiation are:

Dr = − 1
2π

∫ l
0

∫ 2π
0

C2(qs(y), θ)R̂(2K(q, θ))dθdy, (3.15)

Mr =
1

2π

∫ l
0

∫ 2π
0

C2(qs(y), θ)R̂(2K(q, θ)) cos(θ)dθdy, (3.16)

Hr = 1
π

∫ l
0

∫ 2π
0

C2(qs(y), θ)R̂(2K(q, θ)) sin
2(θ)dθdy, (3.17)

respectively. We can also compute the induced displacement Dg and momentumMg of the

soliton gas since the total displacement and momentum are preserved by the perturbation,

so:

Dg = 2(q0 − qs(l))−Dr, (3.18)

Mg = −2(sinh(q0)− sinh(qs(l)))−Mr. (3.19)

The soliton gas actually consists of about ε−2 solitons with parameters of order qεj ∼ ε2.

That is why the induced displacement (equal to 2
∑
j q
ε
j ) and the momentum (equal to

2
∑
j εjq

ε
j) are of order 1, while the energy (equal to (4/3)

∑
j q
ε
j
3) is of order ε4 and hence

asymptotically zero.

3.4 Small soliton regime - white noise

If q � 1, then the scattered energy density can be analyzed more precisely. It is found
that the function C is concentrated around θ = π with a bandwidth of the order of q:

C(q, π + qs)
q�1' 2πsq

sinh(πs)
.
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This means that the radiation is going backward. Integrating establishes that F is simply

F (q)' − 4σ2q3/15, q � 1, and Eq. (3.10) can be solved qs(l) = q0/
√
1 + 8σ2q20l/15. In

terms of energy, the decay rate reads as:

Hs(l) = H0(
1 + 8σ2q20l/15

)3/2 .
The small q limit corresponds to the case of the broad discrete soliton. Then the continuum

description is valid and the evolution of the relative displacements un = xn − xn−1 is
described by the stochastically perturbed Boussinesq equation for the nonlinear string [17]

b(x)utt = uxx + uxuxx +
1

12
uxxxx,

where b(x) = 1 + ε(x), ε(x) is a white noise. The unperturbed Boussinesq equation is

an integrable system, whose associated L operator (in the Lax pair) has a complicated

structure. The analysis of the soliton dynamics in the random nonlinear string has not

performed yet. Our analysis predicts the 1/l decay for the soliton amplitude propagating

in the nonlinear string with the randomly distributed density.

Note finally that the decay rate as l−3/2 for the soliton energy is in agreement with
the numerical simulations carried out in [9, 10]. However, as we shall now see this decay

law is valid only for small-amplitude solitons.

3.5 Large soliton regime - white noise

The regime when q0 � 1 can also be analyzed precisely, while qs(l) � 1. It is found that
the function C becomes independent of θ:

C(q, θ)
q�1' 1

2
eq.

This means that a broadband radiation is emitted. Integrating establishes that F (q)' −
σ2/4,, q � 1, so that the decay rate of qs is linear qs(l) = q0 − σ2l/4, which reads as an
exponential decay in terms of the energy:

Hs(l) = H0 exp
(
−σ

2l

2

)
.

The energy decay rate is also independent of the energy of the incoming soliton. This

remarkable feature was pointed out by the numerical simulations carried out in Ref. [10].

When the value qs becomes of the order of 1, the decay switches to the power law described

in the previous section.

It should be noted that the decay rate of a large-amplitude soliton is higher than the one

of a small amplitude soliton. This seems in contradiction with previous analysis of solitons

driven by random perturbations for other types of integrable systems, such as the NLS

equation [2, 6]. We feel that we cannot extrapolate the results corresponding to the NLS

equation to our system as the discreteness plays a primary role when the soliton amplitude

is large. The analysis of the randomly perturbed NLS equation had shown that nonlinearity

– 9 –
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may reduce the exponential localization. The proposed analysis of the randomly perturbed

Toda system shows that the interplay between discreteness, nonlinearity and randomness

is more complicated and may lead to an enhanced instability of a large-amplitude soliton.

In the large-amplitude regime the soliton width is of the order of one site, and so is the

correlation length of the discrete white noise. This involves a strong interaction between

the fluctuations of the medium and the soliton.

4. Conclusion

We have studied the propagation of solitons through a segment of N impure masses. We

have shown that the decay rate of the soliton energy is an exponential decaying function of

N for large energies, with a decay rate that does not depend on the soliton. The scattering

of a large-amplitude soliton is characterized by the emission of a broadband radiation in

forward and backward directions. When the energy becomes small, the decay switches to

the power law N−3/2. The scattering of a small amplitude soliton is characterized by the
emission of a narrowband backward-going radiation.

We have put into evidence that the scattering of the soliton generates not only con-

tinuous radiation, but also a soliton gas, that is to say a collection of Jε, of order ε−2,
solitons with small parameters qεj , of order ε

2 (remember ε is the dimensionless parameter

that governs the amplitude of the perturbation and the length of the segment N = [l/ε2]).

In the asymptotic framework where ε goes to zero, the soliton gas has non-zero momen-

tum, but zero energy. The production of the soliton gas is interesting by itself as a new

phenomenon that is not encountered when a random NLS or AL equation is considered,

but it should also be pointed out that this production is very important in that one can-

not understand correctly the changes in the conservation equations without accounting for

soliton production.
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