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Abstract:We review our recent results on the on-shell description of sine-Gordon model

with integrable boundary conditions. We determined the spectrum of boundary states

together with their reflection factors by closing the boundary bootstrap and checked these

results against WKB quantization and numerical finite volume spectra obtained from the

truncated conformal space approach. The relation between a boundary resonance state

and the semiclassical instability of a static classical solution is analyzed in detail.

Introduction

Sine-Gordon field theory is defined by the Lagrangean

L = 1
2
(∂Φ)2 +

m2

β2
cos(βΦ) , (1)

where Φ is a real scalar field and β is the coupling constant. It is one of the most important

quantum field theoretic models with numerous applications ranging from particle theoretic

problems to condensed matter systems, and one which has played a central role in our

understanding of 1 + 1 dimensional field theories. A crucial property of the model is inte-

grability, which permits an exact analytic determination of many of its physical properties

and characteristic quantities.

Integrability can also be maintained in the presence of boundaries [1]; for sine-Gordon

theory, the most general boundary potential that preserves integrability was found by

Ghoshal and Zamolodchikov [2]

VB =M0 cos

(
β

2
(Φ(0)− ϕ0)

)
. (2)

They also introduced the notion of ’boundary crossing unitarity’, and combining it with

the boundary version of the Yang-Baxter equations they were able to determine soliton
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reflection factors on the ground state boundary. Later Ghoshal completed this work by

determining the breather reflection factors [3] using a boundary bootstrap equation first

proposed by Fring and Köberle [4].

The first (partial) results on the spectrum of the excited boundary states were obtained

by Saleur and Skorik for Dirichlet boundary conditions [5]. However, they did not take

into account the boundary analogue of the Coleman-Thun mechanism, the importance

of which was first emphasized by Dorey et al. [6]. Using this mechanism Mattsson and

Dorey were able to close the bootstrap in the Dirichlet case and determine the complete

spectrum and the reflection factors on the excited boundary states [7]. Recently we used

their ideas to obtain the spectrum of excited boundary states and their reflection factors

for the Neumann boundary condition [8] and then for the general two-parameter family of

integrable boundary conditions [9].

Another interesting problem is the relation between the ultraviolet (UV) parameters

that appear in the perturbed CFT Hamiltonian and the infrared (IR) parameters in the

reflection factors. This relation was first obtained by Al. B. Zamolodchikov [11] together

with a formula for the boundary energy; however, his results remain unpublished. In order

to have these formulae, we rederived them in our paper [12], where we used them to check

the consistency of the spectrum and of the reflection factors against a boundary version of

truncated conformal space approach (TCSA). Combining the TCSA results with analytic

methods of the Bethe Ansatz we found strong evidence that our understanding of the

spectrum of boundary sine-Gordon model is indeed correct.

Recently M. Kormos and one of us (L.P.) achieved the semiclassical quantization of the

two lowest energy static solutions of the model [13]. By comparing the quantum corrected

energy with the exact one the perturbative correspondence between the Lagrangean and

the bootstrap parameters has been established. In the paper we extend their analysis for

an unstable solution which corresponds to a boundary resonance state. We compute the

decay rate and decay width of the resonance state and show how these results agree with

the semiclassical considerations. We comment also on the possible changes in the finite

volume spectra due to the resonance state.

The paper is organized as follows: in Section 2 we review the boostrap philosophy by

applying to the bulk sine-Gordon theory. In Section 3 we give the boundary analogue of

this picture, the boundary spectrum is determined and the boundary bootstrap is closed

by explaining any pole in the reflection matrix either as a new boundary state or by the

boundary analogue of the Coleman-Thun mechanism. In Section 4 we check the boundary

spectrum and reflection factors against finite volume spectra. Finally in Section 5 we

analyze the semiclassical issues and conclude in Section 6.

Bootstrap in the bulk sine-Gordon theory

The bulk sine-Gordon theory described by (1) is an integrable model since it has infinitely

many conserved quantities. As a consequence, there is no particle production in the scatter-

ings and the multiparticle S-matrix factorizes into the product of two particle S-matrices,

which can be computed using the requirements of unitarity, crossing symmetry and the

– 2 –
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Yang-Baxter equation modulo CDD type ambiguity. The most general solution for the

scattering of an O(2) symmetric doublet has the following form

S(λ, θ) =



−1 0 0 0

0 − sinλπ
sinλ(π+iθ)

sin iλθ
sinλ(π+iθ) 0

0 sin iλθ
sinλ(π+iθ)

− sinλπ
sinλ(π+iθ) 0

0 0 0 −1


×

∞∏
l=1

[
Γ(2(l − 1)λ+ λiθπ )Γ(2lλ+ 1 + λiθπ )

Γ((2l − 1)λ+ λiθπ )Γ((2l − 1)λ+ 1 + λiθπ )
/(θ → −θ)

]
,

where λ is a free parameter. It describes the scattering of the soliton anti-soliton doublet

(s, s̄).

The poles of the scattering matrix signal the existence of other particles appearing

as bound states. For the soliton anti-soliton scattering they are located at θ = i(π/2 −
un) = iπ/2 − inπ2λ . The corresponding particles are called breathers Bn and have masses
mBn = 2M sin(un).

The scattering matrix of the breathers on the soliton doublet can be computed from

the bootstrap procedure, which graphically looks as follows:

u

B
B B

n
n

n

n

Soliton (anti-soliton) lines are shown as straight lines, while the dashed ones correspond

to breathers. The result turns out to be

Sn = {n − 1 + λ}{n − 3 + λ} . . .
{
{1 + λ} if n is even
−√{λ} if n is odd

,

where

{y} =
(
y+1
2λ

)(
y−1
2λ

)
(
y+1
2λ − 1

)(
y−1
2λ + 1

) ; (x) =
sin(iθ/2− xπ/2)
sin(iθ/2 + xπ/2)

.

Analysing the pole structure of the breather-soliton/anti-soliton scattering matrix we find

poles, which can be explained by soliton/anti-soliton intermediate states.

The breather-breather scattering matrix can be computed again by applying the fusion

procedure, but now for the breather-soliton scattering matrix. The result has the following

compact form:

Sn,m = {n +m− 1}{n +m− 3} . . . {n−m+ 3}{n −m+ 1} n ≥ m . (3)

– 3 –
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The poles of the scattering matrix (3) can be explained either by breather intermediate

states or by Coleman-Thun type mechanism as illustrated on the following figure:

n
B

B

B

B

B

n+m

m

1

1

Since we explained all the poles of all the scattering matrices the sine-Gordon model

is solved in the bootstrap sense. This solution has, however, no clear relation to the

Lagrangean. In order to relate the bootstrap parameters to the parameters of the La-

grangean an alternative analysis is needed. Performing the comparison of Thermodynamic

Bethe ansatz with conformal perturbation theory [14] or carrying out the semiclassical

quantization of the model [15] the exact mapping can be obtained

λ =
8π

β2
− 1 ; M = m

8π
8π−β2 κ(β) ,

where the actual form of κ(β) depends on the scheme in which the quantum theory is

defined. In the conformal perturbation framework

κ(β) =
2Γ
(

β2

2(8π−β2)
)

√
πΓ
(
4π

8π−β2
)

πΓ

(
1− β22π

)
2β2Γ

(
β2

8π

)



4π
8π−β2

.

Bootstrap in the boundary sine-Gordon theory

The boundary sine-Gordon theory can be obtained by restricting the bulk sine-Gordon

theory, (1), to the negative half line and imposing the most general integrability preserving

boundary condition at the origin

∂xΦ(x, t)|x=0 = −dVB(Φ)
dΦ

.

Due to the integrability of the model the allowed physical processes are highly restricted.

Besides the usual bulk constraints we also have factorized and elastic reflection on the

boundary. Moreover, the one particle reflection matrices have to obey unitarity, boundary

Yang-Baxter equations and boundary crossing. The most general solution contains two

– 4 –
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parameters, similarly to the boundary potential, and has the following form

R(λ, η,Θ) =

(
P+ Q

Q P−

)
R0(θ)

σ(η, θ)

cos η

σ(iΘ, θ)

coshΘ

P± = cos(iλθ) cos η coshΘ± (cos↔ sin) ; Q = cos iλθ sin iλθ ,
where

R0(θ) =

∞∏
l=1

[
Γ(4lλ+ 2iλθ/π)Γ(4(l − 1)λ+ 1 + 2iλθ/π)

Γ((4l − 3)λ+ 2iλθ/π)Γ((4l − 1)λ+ 1 + 2iλθ/π)/(θ → −θ)
]

is the boundary condition independent part and

σ(x, θ) =
cos(x)

cos(x− iλθ)
∞∏
l=1

[
Γ(12 +

x
π + (2l − 1)λ+ iλθπ )Γ(12 − xπ + (2l − 1)λ+ iλθπ )

Γ(12 − xπ + (2l − 2)λ+ iλθπ )Γ(12 + xπ + 2lλ+ iλθπ )
/(θ → −θ)

]

describes the boundary condition dependence.

The poles of these amplitudes signal the presence of boundary bound states. The

boundary independent poles of R0(θ) have explanations in terms of boundary Coleman-

Thun mechanism [9]. The boundary dependent poles at

θ = iνn = i

(
η

λ
− (2n + 1)

2λ

)

correspond to bound states, denoted by |n〉 with energy m|n〉 =M cos(νn). The reflection
factors on these boundary bound states can be computed from the bootstrap principle,
which graphically looks as follows:

| >| >

|n> |n>
|n>

| > | > | >i nν

The result of the computation is

R|n〉(λ, η,Θ) = R̄(λ, η̄,Θ)an(η, θ) ; an(η, θ) =
n∏
l=1

{
2
( η
π
− l
)}

,

where in R̄ the solitons and the anti-solitons are changed as P̄±(λ, η,Θ) = P∓(λ, η̄,Θ),
Q(λ, η,Θ) = Q(λ, η̄,Θ) and η̄ = π(λ+1)−η. Analyzing the pole structure of these excited
reflection factors we find poles at θ = iwm = iνm(η̄) and at θ = iνn−k, with the following
boundary Coleman-Thun explanations:

– 5 –
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|n>

|n> |n>

|n>

| > | >
B B

n+m
k

iw
m i ν

n i
i ν

ν
n−k

n

The first diagram, however, exists only for wm < νn, since B
n+m must travel towards

the boundary. Thus for wm > νn we have a new boundary boundstate denoted by |n,m〉 :
with energy m|n,m〉 =M(cos(νn) + cos(wm)).
Repeating these procedures one obtains the following pattern of boundary excited

states and reflection factors: Ground state boundary

| 〉 R(λ, η,Θ) .

The excited states with one index have reflection factors and masses of the form

|0〉 R̄(λ, η̄,Θ)
M cos(ν0)

. . .
|n〉 R̄(λ, η̄,Θ)an(η, θ)

M cos(νn)
.

The excited boundary states with two indices have reflection factors and masses as

|n,m〉 R(λ, η,Θ)an(η, θ)am(η̄, θ)

M cos(νn) +M cos(wm)
.

The general state has any of these forms

|n1,m1, . . . , nk〉 R̄(λ, η̄,Θ)an1(η, θ)am1(η̄, θ) . . . ank(η, θ)

M cos(νn1) +M cos(wm1) + . . .+M cos(νnk)

|n1,m1, . . . ,mk〉 R(λ, η,Θ)an1(η, θ)am1(η̄, θ) . . . amk(η̄, θ)

M cos(νn1) +M cos(wm1) + . . .+M cos(wmk)
.

By finding these boundary excited states the bootstrap is closed in the sense, that on these

boundaries with these reflection factors every pole can be explained by either a boundary

Coleman-Thun diagram or a boundary bound state creation or both.

By virtue of their derivation the solution of the boostrap program contains the param-

eters of the ground state boundary reflection factor and has nothing to do with the pa-

rameters of the Lagrangean. Al. B. Zamolodchikov gave the relations of these parameters,

which can be checked both in finite volume analysis and in semiclassical considerations.

cos

(
η

λ+ 1

)
cosh

(
Θ

λ+ 1

)
=

M0
Mcrit(β)

cos (α) ; α =
βϕ0
2

sin

(
η

λ+ 1

)
sinh

(
Θ

λ+ 1

)
=

M0
Mcrit(β)

sin (α) ,
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where, similarly to the bulk model, the actual form of Mcrit(β) depends on the renormal-

ization scheme in which the model is defined. In the perturbed conformal field theory

framework it is

Mcrit(β) = m

√√√√ 2

β2 sin
(
β2

8

) .

Finite volume analysis

In establishing the relation above one has to compare the exact bootstrap quantities with

computations coming directly form the Lagrangean. One possible way is to put the system

in a finite interval of size L and analyze the energy levels of the system as a function of

the system size, imposing two different boundary conditions on the ends. The two extreme

limits can be solved exactly.

The L → ∞ limit is called the infrared (IR) limit. This is just the theory we solved:
The energy eigenstates consists of arbitrary number of moving solitons, anti-solitons and

breathers together with the boundary excited states corresponding to the two boundaries.

The L → 0 limit is called the ultraviolet (UV) limit. Since all the potential terms,
both the bulk and boundary, are scaled out the system looks like a free boson

H =
1

8π

∫ L
0

(
Π2 + (∂xΦ)

2
)
dx

with compactification radius r satisfying rβ =
√
4π. That is a c = 1 conformal field theory

with Neumann boundary condition applied on both ends. The spectrum can be read off

from the Hilbert space a−n1 . . . a−nk |n〉 ; Π0|n〉 = n
r |n〉 and from the Hamiltonian of the

model

H =
π

L


2Π20 +∑

n 6=0
na−nan


 ; [an, am] = nδn+m.

The matching of the IR and UV parameters can be achieved by introducing a finite vol-

ume analysis starting from the UV and another from the IR with overlaping regions and

comparing the energy levels.

For small L we regard the boundary sine-Gordon theory as a joint bulk and boundary

perturbation of the boundary conformal field theory introduced [8]. Using the vertex

operators of the c = 1 model

Vn(x, t) ∝: einrΦ(x,t) : ; Ψn(t) =: einrΦ(0,t) :

the perturbation of the Hamiltonian has the form

Hpert.bulk →
m2

2β2
(V2 + V−2) ; Hpert.bd. →

M0
2
(e−

i
r
ϕ0Ψ1 + e

i
r
ϕ0Ψ−1) .

The computation of the matrix elements of the perturbing potential is straightforward, but

tedious. Truncating the Hilbert space at certain energy levels and diagonalizing the total

– 7 –
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Hamiltonian numericaly we arrive at the Truncated Conform Space Approach (TCSA)

which provides a numerical finite volume spectra being exact for small L.

For large L we can obtain a finite volume spectrum by computing corrections to the

IR spectrum. The energy levels of the moving particles

E(L) =
√
M2 + P (L)2

are affected by finite spatial volume. In the case of periodic boundary condition the mo-

menta are quantized as

eiPL = 1 → P (L) = 2π
L
N .

If, however, we have reflection factors R0(P ) and RL(P ) on the two ends of the strip, then

the momentum quantization for singlet one particle states changes as

ei2PLR0(P )RL(P ) = 1→ P (L) .

As a consequence the finite volume energy levels depend on the reflection factors and, in

the case multiparticle states, also on the scattering matrices, depending in this way on the

IR parameters.

The comparison between the small L and large L regions either gives a numerical

matching between the UV and IR parameters or if this relation is already conjectured then

it provides a numerical justification of its correctness. We used the second possibility with

the result shown on the following figure.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

(E
-E

0)
/M

l

On the figure continous lines come from the TCSA, while the others correspond to the

various multiparticle IR lines. The observed very good aggrement shows the correctness not

only of the UV-IR relation but also of the entire IR spectrum together with the reflection

factors.
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For completeness we mention that in order to derive the exact UV-IR relation one needs

to compute the finite volume energy at least for one state, say for the ground state, exactly.

The thermodynamic Bethe ansatz provides an integral equation for the ground state energy,

containing the IR parameters, from which the boundary energy can be extracted [11, 10].

This quantity is related to the vacuum expectation value of the boundary vertex operator,

which can also be calculated exactly in terms of the UV parameters [16]. The comparison

of the two results gives the required UV-IR relation.

Semiclassical considerations

We have seen that the two lowest energy boundary state, the ground state and the first

excited state, characterized by

| 〉 R(λ, η,Θ) ; |0〉 R̄(λ, η̄,Θ)
M cos(ν0)

are related by the s ↔ s̄, η ↔ η̄ transformations. The classical analogues of these states
are the two static solutions with lowest energy, given by a static bulk soliton/anti-soliton

standing at the right place’ : i.e. by choosing Φ ≡ Φs(x, a+) or Φ ≡ Φs̄(x, a−) for x ≤ 0,
where

Φs(x, a
+) =

4

β
arctg(em(x−a

+)), Φs̄(x, a
−) =

2π

β
− Φs(x, a−),

0

2  /π β 2  /π β

0

and a± are determined by the boundary condition:

sinh(ma±) =
A± cos(α)
sin(α)

; A =
4m

M0β2
.

The energy difference of these two solutions can be written as

Es̄(M0, ϕ0)− Es(M0, ϕ0) =M0(R(+)−R(−)) ; R(±) =
√
1± 2A cos(α) +A2 . (4)

In the process of semi-classical quantisation the oscillators associated to the linearized

fluctuations around the static solutions Φ(x, t) = Φs,s̄ + e
iωtξ±(x) are quantised. The

equations of motion of these fluctuations describe how the elementary excitations of the

field Φ -namely the first breather- behave in the presence of the nontrivial background. It

can be written as:[
− d

2

dx2
+m2 − 2m2

cosh2(m[x− a±])
]
ξ±(x) = ω2ξ±(x); x < 0 , (5)

– 9 –
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where ξ±(x) must satisfy also the linearized version of the boundary condition:

ξ′±(x)|x=0 = −
m

A

1±A cosα
R(±) ξ±(0) . (6)

These eigenvalue problems can be solved exactly by mapping eq.(5) to a hypergeometric

differential equation, whose spectrum in general has a discrete and a continous part. The

discrete real eigenvalues correspond to excited boundary states, while imaginary eigenvalues

signals the instability of the static solution. The continous spectrum shows how the first

breather reflects on the classical boundary. By summing up the zero point energies of the

quantized fluctuations and eliminating the logarithmic divergencies by boundary (δm2)

and bulk parameter (δM0) renormalization the semiclassically corrected energy difference

can be computed exactly. Performing the complete analyzis we know semiclassically

• the energy of the excited boundary state,
• the reflection factor of the first breather on the ground state boundary,
• and the energy difference between the two lowest lying energy levels.

Comparing these quantities with the semiclassical limit, λ → ∞, of their exact quantum
values the semiclassical UV-IR parameter correspondence can be established. If we use the

parametrization

η = ηcl(λ+ 1) ; Θ = Θcl(λ+ 1) ,

then the relation is

cos ηcl =
R(+)−R(−)

2A
; coshΘcl =

R(+) +R(−)
2A

, (7)

which also determines Mcrit in the perturbative scheme as Mcrit/M0 = A. These corre-

spondence can be also be confirmed by comparing the semiclassical limit of the solitonic

reflection factors with the classical time delay [13].

Boundary resonance states and the stability of the classical solutions

The stability of a classical solution can be read off from the discrete spectrum in the

semiclassical analyzis. It is convenient to write ω2 = m2(1−ε2). The normalizable solutions
of eq.(5) must vanish at x→ −∞, and assuming ε to be positive, they are given by:

ξ±(x) = Nemε(x−a
±)(ε− tanh[m(x− a±)]) .

The boundary conditions determine the possible values of ε as

ε2 + ε
R(±)
A
± cosα
A
= 0 .

It is easy to show, that for the solitonic ground state there is no positive solution of this

equation, while for the anti-solitonic exited’ state one of the roots, namely

ε = cos ηcl , (8)

– 10 –
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is positive. In the framework of semi-classical quantisation these findings imply, that there

are no boundary bound states for the ground state, described by Φs, while for the state,

described by Φs̄, there is such a boundary bound state. The semiclassical energy of the

boundary state ω0 = m sin ηcl vanishes for α → 0 if A > 1, which shows the instability of
the anti-solitonic boundary solution. This is consistent with the classical picture, where

the energy difference, (4), is precisely the mass of the bulk soliton, and since topological

charge is not conserved in the boundary theory, the higher energy state can decay into the

lower one by emitting a standing soliton.

At this point it is worth comparing the stability analysis of this α → 0 situation and
the one when α = 0 is set from the start, to emphasize the non smooth nature of the limit.

In the latter case the two classical solutions become Φ1 ≡ 2π
β and Φ2 ≡ 0. The equations

for the small fluctuations are[
− d

2

dx2
+m2

]
ξ±(x) = ω2ξ±(x) ; ξ′±(x)|x=0 = ∓

m

A
ξ±(0) .

Repeating the stability analysis reveals that there are no normalizable bound state solu-

tions for the ground state, Φ2, while for the ’excited’ state, Φ1, there is a normalizable

solution Ne
m
A
x, with ω2 = m2(1 − A−2). When A > 1 this solution signals the existence

of a boundary state, while for A < 1, when this ω2 becomes negative, it indicates the

instability of Φ1. The absolute value of the purely imaginary frequency is interpreted as

the semiclassical resonance width:

Γcl = m

√
1

A2
− 1 . (9)

Similarly to the α → 0 case analyzed above, we also have a nice classical interpretation.
For this range of A there is a moving anti-solitonic solution of the equation of motions

Φs(x, v) =
4

β
arctg

[
e
m

(
x−vt√
1−v2

−a
)]

, v =
√
1−A2 ,

which looks as follows

v

0

π2    / β

This solution for t → −∞ looks like the excited boundary state without any anti-
soliton, (the anti-soliton is on the nonphysical part of the space time). For t → ∞ the
situation changes as follows: the boundary is in the ground state while an anti-soliton is

moving far away from the boundary. So the excited boundary decayed into the ground

state boundary by emitting a moving anti-soliton.

– 11 –
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Let us focus on the quantum theory now. In a theory with bulk a resonance state the

scattering matrix of the stable particles exhibits a pole singularity at s = (Mres + iΓ/2)
2,

where Mres is the mass, while Γ the decay width of the resonance. This can be seen from

the form of the bulk propagator G(p)−1 ∝ p2−m2. The boundary propagator has the form
GB(p0)

−1 ∝ p0 −m, thus a boundary resonance state shows up in the reflection factor as
a pole in the energy at p0 = Mres + iΓ/2, where Mres is the energy, while Γ is the decay

width of the resonance state. In order to find the boundary resonance state we analize the

solitonic reflection factors.

The semiclassical region, where we see the instable state, corresponds to the α = 0 and

A > 1 domain, which can be parametrized by ηcl = 0 and Θcl =
Θ
λ+1 and can be reached as

Θ→∞, λ→∞. Concentrating on this asymptotic region the σ(iΘ,θ)coshΘ term of the reflection

factor has simple poles at

θn =
Θ

λ
− i(2n + 1)π

2λ
; n ≥ 0 ,

from which the closest to the real axis is

θ0 =
Θ

λ
− i π
2λ

.

The energy of this resonance state has a real and an imaginary part

E − E0 =M cosh
(
Θ

λ

)
cos
( π
2λ

)
− iM sinh

(
Θ

λ

)
sin
( π
2λ

)
,

which in the semiclassical limit can be written as

E − E0 =M coshΘcl − iM π
2λ
sinhΘcl .

Using the semiclassical UV-IR relation, (7), for ηcl = 0 we have cosh(Θcl) = A
−1. Since the

semiclassical soliton mass is M = 8m
β2
(1− β22π ) the leading order of the real part reproduces

the energy difference (4), while the imaginary part the semiclassical decay width (9).

We have tried to analyze the effect of the boundary resonance state for the finite

volume spectra of the model. We investigated the behaviour of the solitonic reflection

factor near the resonance, but we could not tune the parameters to keep the resonance

strong and obtain a believable TCSA spectrum in the same time. Thus the resonance

was unobservable. P. Dorey pointed out, however, that a more significant effect might be

obtained by analyzing the ground state energy of the system for small volumes similarly

to the homogenous sine Gordon case talk by J. L. Miramontes.

Conclusions

We reviewed our recent results on the boundary sine-Gordon model. By closing the bound-

ary bootstrap we determined the spectrum of boundary excitations together with the cor-

responding reflection factors. In order to check the results we rederived Zamolodchikov‘s

UV-IR relation and used it in finite volume analyzis to confirm their correctness. We
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also performed a semiclassical quantization, were the correspondence between a semiclassi-

cally unstable static solution and the resonance pole of the solitonic reflection factors was

analyzed in detail.

The main open problems are the calculation of off-shell quantities (e.g. correlation

functions) and exact finite size spectra. While correlation functions in general present a

very hard problem even in theories without boundaries, in integrable theories significant

progress was made using form factors. It would be interesting to make further progress in

this direction.

It would also be interesting to work out a formalism (an analogue of the Cutkosky rules

of quantum field theory in the bulk) in which the rules for the boundary Coleman-Thun

diagrams can be justified. Following [17] a work is in progress in this direction.

Now we are able to report that, as an important step in the supersymmetric general-

isation of the model, the boundary spectrum and reflection factors have been determined

[18] by closing the boundary bootstrap. In order to confirm these results we are developing

a TCSA analyzis for the supersymmetric theory.
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