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Abstract: We review work on the minimum energy configurations of the Faddeev-

Skyrme model. The model contains a unit vector-field defined in the three dimensional

space and pointing to a fixed direction at spatial infinity, the field configurations are par-

tially characterized by the Hopf charge. This model, proposed by Faddeev in 1975, allows

for localized and stable finite-energy configurations with nonzero Hopf charge. We discuss

the deformation process of (linked) unknots in which a given initial vector-field evolves

to the minimum energy configuration under dissipative dynamics.

1. Knots in physics

Knots have occupied physicists for more than a century. Lord Kelvin (1869) was perhaps

the first to use knots in explaining physical phenomena: he proposed to consider atoms

as knotted tubes of ether. Classification of knots would then give classification of atoms.

This proposal did not work in physics, but it gave an impetus in the mathematical study

of knots.

When we consider physical knots the first questions is: What kind of material can form

knots? There are simple physical examples, e.g., rope or DNA, both of which are modeled

by localized material in empty space.

In this paper we review the work of [1, 2], in which the object (line) that forms

knots is the vortex core. In particular the vortex “material” is defined everywhere, and

its particular value defines the core. For example, in the case of a tornado, hurricane,

or maelstrom the velocity vector is defined everywhere and the vortex is associated to a

special point in its distribution (e.g., the eye of hurricane). However, a velocity vector can

decrease continuously to zero, and therefore there cannot be any topological conservation

laws and vortices can disappear. In this paper we only consider permanent vortices, whose

existence is guaranteed by a topological conservation law.
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2. Topology

A typical example of a topological conservation law on the plane is the number of times a

closed path goes around a fixed point. This number is conserved under all deformations in

which the path does not cross the chosen fixed point. More precisely we should consider

a closed curve on a punctured plane f : S1 → R2 \{(0, 0)} ≈ S1, and topologically such
maps can be classified into homotopy classes according to the winding number π1(S

1) = Z.

What kind of topological conservation laws can we have in R3?

To each point in the space R3 we associate a 3D-unit vector n. These 3D-unit vectors

can be represented by points on the surface of the sphere S2. We assume the vectors point to

the same direction at spatial infinity and therefore the spatial infinity can be contracted to

a point, i.e., R3 ≈ S3. Thus, the unit vector provides us the map n : S3 → S2. Such maps
can be characterized topogically by a Hopf charge, i.e., by the homotopy class π3(S

2) = Z.

The simplest unit vector-field with Hopf-charge Q = −1 is the following (Whitehead
1947)

n1 =
4(2xz − y(x2 + y2 + z2 − 1))

(1 + x2 + y2 + z2)2
,

n2 =
4(2yz + x(x2 + y2 + z2 − 1))

(1 + x2 + y2 + z2)2
,

n3 = 1− 8(x2 + y2)

(1 + x2 + y2 + z2)2
.

Note that n→ (0, 0, 1) as x2+ y2+ z2 →∞, and the preimage of n = (0, 0,−1) is the ring
z = 0, x2 + y2 = 1, which forms the vortex core.

Later we will discuss how the Hopf charge is obtained using knot-theoretical concepts.

Here we mention how it can be ontained from n using calculus: Given the unit vector field

n : R3 → S2 we define Fij = εabcna∂inb∂jnc. Given Fij we must next construct Aj so
that Fij = ∂iAj − ∂jAi, clearly Ai can only be defined up to a gauge Ai → Ai + ∂iΦ. A
convenient gauge is A3 = 0, then from F13 = −∂3A1 we can integrate A1, and A2 from
F23 = −∂3A2, the integration constants are then determined from F12 = ∂1A2 − ∂2A1.
Finally we define

Q =
1

16π2

∫
εijkAiFjk d

3x. (2.1)

This procedure can be easily implemented numerically.

3. How to visualize vector fields?

Before going into specific models and their vector-field solutions let us consider the problem

of visualizing the vector field. Clearly we cannot draw vectors at every point in space.

Furthermore, flow lines do not make sense because of global gauge invariance, in fact our

vectors could live in another space, e.g., the internal spin space.

As described above, vectors n can be represented by points on the sphere. We have al-

ready one fixed direction, n at infinity, which we define as the north pole, i.e., n∞ = (0, 0, 1).

– 2 –
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Figure 1: Isosurface n3 = 0 for charge −1 and −2 unknots [1].

All other vectors can be characterized by the latitude and longitude of the corresponding

point on the sphere. Latitude is invariant under global rotations (it is characterized by the

value of n∞ · n), and therefore it is informative to plot equilatitude surfaces. Longitudes
are represented by colors on the equilatitude surface, which is natural because colors are

associated with the “color circle”. (Under a global gauge rotation only colors change). The

n3 = 0 isosurface shown in Figure 1 is just one of the isosurfaces we can draw, and inside

is the core line, where n3 = −1. Alternatively we could draw preimage-curves of various
n values. For example, since the coloring in Figure 1 is by latitude the color boundaries

are preimages of various point on the equator. The order of colors and the handedness of

twist on the torus determine Hopf charge through their association to linking numbers of

the preimages, this will be discussed further in Section 6.

4. Faddeev’s model and its numerical investigation

In addition to topology we need physics. In 1975 Faddeev [3] proposed the following

Lagrangian (energy) for the unit vector field n:

E =

∫ [
(∂µn)

2 + g F 2µν
]
d3x, Fµν := εabcn

a∂µn
b∂νn

c. (4.1)

Note that under the scaling n(r)→ n(λr) the integrated kinetic term scales as λ and the
integrated F 2 term as λ−1, and therefore in this model nontrivial configurations will attain
some fixed size determined by the dimensional coupling constant g (Virial theorem).

In 1979 Vakulenko and Kapitanskii [4] obtained an intriguing lower limit (“VK bound”)

for the energy of this model, E ≥ c |Q| 34 , where c is some constant and Q the Hopf charge.
Note the 3/4 power in the Q dependence. An improved estimate for the constant c was

later obtained by Ward [5].

Some other field theoretical models having configurations with nonzero Hopf charge

have also been proposed, these include

• de Vega (1978), Higgs-models (Abelian and SU(2)) [6],
• Nicole (1978), L = − [−14(∂µna)2

]3/2
[7],

• Kundu and Rubakov (1982), S2 nonlinear σ-model [8],
• Aratyn, Ferreira, Zimerman (1999), L = − [F 2µν]3/4 [9].

– 3 –
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The first numerical studies of Faddeev’s
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Figure 2: Energy values for various configura-

tions [2]. Filled circles give the best result for a

given Hopf charge; open squares are from [12].

Note the scaling by E(|Q|=1)|Q|3/4.

model were done by Gladikowski and Hell-

mund [10], but they only considered charges

1 and 2 within the cylindrical ansatz; they

also considered other choices for the energy

functional. Then Faddeev and Niemi [11] pre-

sented results on charges 1 and 2, still within

cylindrical ansatz, but they also presented con-

jectures on the trefoil knots, which generated

new activity in this field. Soon after Bat-

tye and Sutcliffe [12] presented comprehensive

results for charges 1-8. Their initial states

were torus type unknots, and for higher Hopf

charges the results show interesting deforma-

tions, including deformation to the trefoil knot for charge 7. Hietarinta and Salo [1] con-

sidered several linked initial configurations, and they also saw deformation into the trefoil

knot for charge 7. A further study [2] revealed more details on the lowest energy states,

resulting with a very good agreement with the VK bound, as can be seen in Figure 2.

5. Linked unknots

We will now give some further details on the work reported in [1, 2]. In that work a full

three dimensional minimization was done, as opposed to the cylindrical ansatz of [10, 11].

Another important technical difference in comparison with [11] was that in [1, 2] the real

unit vector field n was used, rather than the complex scalar field W = (n1+ i n2)/(1+n3),

which in principle carries the same information. This was done because the singularities in

W (i.e., points where n3 = −1) are hard to handle numerically. Of course when one uses n
one has to make sure that |n(x, y, z)| = 1 at all times, this was guaranteed by scaling back
to |n| = 1 after each iteration step (5.1).
In the numerical implementation we decided to use a discretization that allows straight-

forward parallelization. The system was discretized on a regular cubic lattice, size typically

2403. In discretizing the Lagrangian (4.1) we discretized ∂in on links, Fij on plaquettes.

Using more lattice points to discretize a derivative would perhaps be more accurate, but

with our choice the code parallelization was simpler since only one boundary layer had

to be exchanged between processors. From the discretized Lagrangian we computed the

gradient ∇n(r)L symbolically and the minimum energy configuration was then found using
dissipative dynamics

nnew(r) = nold(r)− δ∇n(r)L, ∀r. (5.1)

Program parallelized well, and we have used various parallel machines, including Cray T3E,

SGI Origin 2000, IBM RS/6000 SP Cluster.

One novel idea in [1, 2] was to consider more complicated initial states than torus un-

knots, namely linked unknots. Such initial states were constructed by taking two unknots,

– 4 –
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Figure 3: Snapshots of the deformation of a (1, 5) unknot (upper left) into a 1 + 2+ 2 link (lower

right).

cutting each into 4 parts, and then recombining them by filling some sections with straight

tubes, others with the vacuum (cf. Fig. 2 in [1]). The total Hopf charge of such a linked

combination is the sum of charges of individual unknots plus their linking number. The

linking number depends on the relative direction associated with the unknots, this will be

discussed more in Section 6.

In [1] various ways of linking charge |Q| = 1, 2 unknots were considered. Perhaps the
most interesting results was the sequence by which a linked configuration −4−5+2 relaxed
into a trefoil knot of Hopf charge −7 [13]. In [2] a wider class of linked configurations was
considered and as a result even better minimum states were found. Unknots with torus-

shaped isosurfaces can have color boundaries (preimages of points on the equator) that

rotate n times around the small circle andm times around the large one, such configurations

are called (n,m)-unknots. In [12, 1] only (n, 1)-unknots were used, but in [2] also (1,m)-

unknots were included. The deformation of (1, 5)→ 1+2+2 is illustrated in Figure 3. The
best new results turned out to improve agreement with the VK bound, as is illustrated in

Figure 2.

6. Knot theory

The proper knot-theoretical setting for the analysis of knots associated to unit vector fields

is to use framed links. This is because it is not sufficient to know the location of the vortex

– 5 –
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Figure 4: (1, 2) torus. Figure 5: (2, 1) torus.

core (=the preimage of the south pole of the map n : R3 ≈ S3 → S2), but also the twisting
around the core, and the framing attached to a curve adds this needed local information.

In order to visualize framed links we use directed ribbons, which are preimages of line

segments. We can use equilatitude line segments, then increasing latitude and longitude

give two directions and their cross product gives the ribbon direction. For practical reasons

we usually replace the ribbon by 4 nearby colored lines, Figures 4 and 5 give two examples.

The Hopf charge can be computed from the directed preimage-lines as follows[14]: We

define

twist = twist along the ribbon axis, i.e., linking number of the ribbon core with one

of the (adjacent) ribbon boundaries,

writhe = signed crossing number of the ribbon core with itself,

where linking number = 1
2 (sum of signed crossings).

With these definitions we can calculate the Hopf charge using either of the two formulae

a) twist + writhe,

b) linking number of the two ribbon boundaries.

One can also show that computing Hopf charge from (2.1) gives the same number as the

present definition through linking numbers [15].

The sign convention used for the crossing of two directed lines is given on the leftmost

part of Figure 6. If one takes the charge −1 torus unknot illustrated in Figure 1 then the

Figure 6: On the left: sign conventions for crossings, and application to the charge 1 unknot of

Figure 1. On the right how ribbons look when turned vertically, twist becomes a crossing, and

therefore the Reidemeister move I is not allowed.

– 6 –
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Figure 7: Initial state: two linked ribbons,

with red lines close to each other.

Figure 8: Red lines have touched and redis-

tributed at intersection, now forming one big

circle.

Figure 9: Also yellow and green lines have

changed, blue still forms two circles.

Figure 10: The ribbon now forms one big

circle.

red and blue lines in Figure 6 correspond to any two consecutive color boundaries. The

Hopf charge is obtained by counting the “linking number of the two ribbon boundaries”,

ribbon in this case being a band of solid color. On the right of Figure 6 we have shown how

the ribbon looks when it has been turned vertically and is viewed from above (as is usually

done with knot diagrams): a twist in the ribbon becomes a crossing. Note that when

considering equivalence of framed diagrams the type I Reidemeister move is not allowed,

it would remove a twist from the ribbon.

Returning to Figures 4 and 5 that show the ribbon view of torus unknots of charge−2,
we can see that there are two ways to obtain such configurations, we can go twice around

small vs. large circle. In Figure 4 we have twist = −1, writhe = −1, and in Figure 5 twist
= −2, writhe = 0, but in both cases we have boundary linking number = −2.

7. Ribbon deformations

One of the most fascinating things seen in the time evolution of the energy minimization

[13] is the way the configurations deform into each other, for example how the trefoil is

formed. The topological data in the vector field can be coded into framed links or ribbons,

– 7 –
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Figure 11: Possible ribbon deformations.

and knot deformations correspond to ribbon deformations in which the Hopf charge is

conserved.

Ribbon deformation can be seen if we look the same configuration at different latitudes

(see Figures 7-10), or at same latitude at different times of the evolution. This is a contin-

uous deformation and therefore it can happen only when two ribbons approach each other

with edges of the same color. When these same color lines touch they can redistribute and

when this is extended to the whole ribbon the process is as in Figures 7-10. When drawing

knot diagrams this means that we can have deformations like in Figure 11.

8. Physically relevant extensions

Faddeev’s model is the basic model that displays a rich phenomenology. One important

question is whether it is relevant in the description of observed physical processes. The

answer seems to be positive, and Faddeev’s model seems to be hidden in many more physical

models, some of the phenomena already discussed in this context include: electrically

conducting plasmas [16], charged two-condensate Bose system [17], superconductors [18],

and Weinberg-Salam model [19].

For example, Babaev et al [17] have proposed that Faddeev’s model resides inside the

Gross-Pitaevskii model of two electromagnetically coupled oppositely charged Bose con-

densates: After a suitable change of variables one obtains an energy functional containing

Faddeev’s model, coupled to several other fields. It is still an open question whether one

can keep the topological structure with these extra fields; they sometimes appear multi-

plicatively and if they vanish the scaling properties change.

Vortices in superfluid 3He present another interesting application, especially in the

CUV-phase [20].

9. Conclusions

Our numerical results show that in Faddeev’s model a given initial configuration of linked

unknots can deform to a final, minimum energy configuration through a very complicated

process. Each configuration can be characterized with a Hopf charge which is conserved

during the deformation. The deformations can be understood in terms of framed ribbons

and their allowed deformations, as described in knot theory. There is now increasing

evidence that Faddeev’s model and its extensions have a variety of different applications

in various fields of physics.

– 8 –
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