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Abstract: In this paper solutions (first obtained in [1]) of the Bogomolny Yang-Mills-

Higgs equations in (2+1) anti-de Sitter space which are integrable are presented using

analytical methods. In particular, families of soliton solutions have been constructed

explicitly and their dynamics has been investigated in some detail.

1. Introduction

In this paper, we consider an integrable system [2] which is related to hyperbolic monopoles.

Recall that the the monopole equations on hyperbolic space IH3 are integrable [3] and
that they turn out to be easier to study than the Euclidean (see, for example, [4]). The

model we are going to investigate follows from replacing the positive defined space IH3 of
the hyperbolic monopole equations by a Lorentzian version, ie the anti-de Sitter space.

In recent years, the n-dimensional anti-de Sitter spacetime has been of continuing interest

since it is a possible vacuum of M-theory and a source of simple examples studying methods

and spacetime concepts both on classical and quantum level. It also arises as the natural

ground state of gauged supergravity theories when quantized [5].

The Bogomolny version of Yang-Mills-Higgs equations for Yang-Mills-Higgs fields on

a three-dimensional Riemannian manifold (M) with gauge group SU(2) have the form

DiΦ =
1

2
√|g|gij ε

jklFkl. (1.1)

Here Ak, for k = 0, 1, 2, is the su(2)-valued gauge potential, with field strength Fij =

∂iAj−∂jAi+[Ai, Aj ] and Φ = Φ(xµ) is the su(2)-valued Higgs field; while xµ = (x0, x1, x2)
represent the local coordinates on M . The action of the covariant derivative Di = ∂i +Ai
on Φ is: DiΦ = ∂iΦ + [Ai,Φ]. Equation (1.1) is integrable in the sense that a Lax pair
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exists for constant curvature. In particular, the solutions of (1.1) correspond to Euclidean

or hyperbolic BPS monopoles when (M, g) is Euclidean IR3 or hyperbolic IH3 space.
By definition the (2+1)-dimensional anti-de Sitter space is the universal covering space

of the hyperboloid H satisfied by the equation
U2 + V 2 −X2 − Y 2 = 1 (1.2)

with metric given by

ds2 = −dU2 − dV 2 + dX2 + dY 2. (1.3)

By parametrizing the hyperboloid H by
U = sec ρ cos θ

V = sec ρ sin θ

X = tan ρ cos φ

Y = tan ρ sinφ (1.4)

for ρ ∈ [0, π/2), the corresponding metric takes the form
ds2 = sec2 ρ

(−dθ2 + dρ2 + sin2 ρ dφ2) . (1.5)

The spacetime contains closed timelike curves, due to the periodicity of θ (for more details,

see Ref. [6]). In fact, anti-de Sitter space (as a manifold) is the product of an open spatial

disc with θ and constant curvature equal to minus six in units of the cosmological constant

(or vacuum energy) as the normalization of (1.1) requires. The variables (ρ, φ) correspond

to polar coordinates and θ ∈ R being the time. Null spacelike infinity I consists of the
timelike cylinder ρ = π/2 and this surface is never reached by timelike geodesics.

If the Poincaré coordinates (r, x, t) for r > 0 are defined as

r =
1

U +X

x =
Y

U +X

t =
−V
U +X

(1.6)

the metric simplifies to the following form

ds2 = r−2(−dt2 + dr2 + dx2). (1.7)

Note that, the Poincaré coordinates cover a small part of anti-de Sitter space, ie that

corresponding to half of the hyperboloid H for U +X > 0. The surface r = 0 is part of
infinity I.
Hitchin [7] shows that the minitwistor space corresponding to Poincaré space (1.7) is

CP 1 × CP 1 and can be visualized as a quadric Q in CP 3; while the points of spacetime
correspond to certain plane sections (conics) of Q with space CP 3. The relevant conics

which have to be real and nondegenerate, are given by the expression [2]

ω = v − r2 (µ− u)−1 (1.8)
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where (ω, µ) are standard coordinates on the two CP 1 factors of Q, while u = x + t and

v = x − t. Note that the Poincaré coordinates (r, x, t) cover all of the space of these
conics (which is the top half of RP 3) expect for a set of measure zero. In order to see the

correspondence between spacetime and twistor space Q one needs to substitute (1.6) into

(1.8).

Consider the set of linear equations

[rDr − 2(λ− u)Du − Φ]Ψ = 0[
2Dv +

λ− u
r
Dr − λ− u

r2
Φ

]
Ψ = 0. (1.9)

Here λ ∈ C and (r, u, v) are the Poincaré coordinates. The gauge fields (Φ, Ar, Au, Av)
are 2 × 2 trace-free matrices depending only on (r, u, v) and Ψ(λ, r, u, t) is a unimodular
2 × 2 matrix function satisfying the reality condition Ψ(λ)Ψ(λ̄)† = I (where † denotes
the complex conjugate transpose). The system (1.9) is overdetermined and in order for a

solution Ψ to exist the following integrability conditions need to be satisfied

DuΦ = rFur

DvΦ = −rFvr
DrΦ = −2rFuv. (1.10)

The above equations are consistent with the ones obtained from (1.1) using the Poincaré

coordinates.

The gauge and Higgs fields in terms of the function Ψ can be obtained from the Lax

pair (1.9). Note that, as λ→∞ the function Ψ goes to the identity matrix which implies
that

Au = 0, Ar =
1

r
Φ. (1.11)

On the other hand, for λ = 0 and using (1.11) the rest of the gauge fields are defined as

Φ = −r
2
JrJ

−1 − uJuJ−1

Av =
u

2r
JrJ

−1 − JvJ−1 (1.12)

where J(r, u, v)
.
= Ψ(λ = 0, r, u, v). Note that, in this case, the first equation of the system

(1.10) is automatically satisfied (due to the specific gauge choice).

Recently, Ward [2] has shown that holomorphic vector bundles V over Q determine

multi-soliton solutions of (1.10) in anti-de Sitter space via the usual Penrose transform.

This way a five-parameter family of soliton solutions can be obtained, in a similar way as

for flat spacetime [8]. Later, more solutions of equations (1.10) were obtained by Zhou

[9, 10] using Darboux transformations with constant and variable spectral parameters. In

what follows, we use the Riemann problem with zeros to construct families of soliton solu-

tions and observe the occurrence of different types of scattering behaviour. More precisely,

we present families of multi-soliton solutions with trivial and nontrivial scattering.
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2. Construction of Solitons

Using the standard method of Riemann problem with zeros in order to construct the multi-

soliton solution, we assume [8] that the function Ψ has the simple form in λ, ie

Ψ = I +

n∑
k=1

Mk
λ− µk (2.1)

whereMk are 2×2 matrices independent of λ and n is the soliton number. The components
of the matrixMk are given in terms of a rational function fk(ωk) = ak ωk+ck of the complex

variable: ωk = v−r2 (µk−u)−1. Here ak, ck and µk are complex constants which determine
the size, position and velocity of the k-th solitons. Remark: The rational dependence of

the solutions Ψ follows (directly) when the inverse spectral theory is considered. In [11]

(for the flat spacetime), it was shown by solving the Cauchy problem that the spectral data

is a function of a parameter similar to (1.8).

The matrix Mk has the form

Mk =

n∑
l=1

(Γ−1)klm̄lam
k
b (2.2)

with Γ−1 the inverse of

Γkl =

2∑
a=1

(µ̄k − µl)−1m̄kamla (2.3)

andmka holomorphic functions of ωk, of the formm
k
a = (m

k
1 ,m

k
2) = (1, fk). The Yang-Mills-

Higgs fields (Φ, Ar, Av, Au) can then be read off from (1.11-1.12) and they automatically

satisfy (1.10). The corresponding solitons are spatially localized since Φ → 0 at spatial
infinity (ie at r = 0). In this case, the solitons scatter in a trivial way, that is they pass

each other without any phase shift or change of velocity/shape.

3. Scattering Solutions

The Riemann problem with zeros approach assumes that the parameters µk are distinct and

also µ̄k 6= µl for all (k, l). However, examples of generalizations of these constructions can
be obtained either involving higher order poles in µk or when µ̄k = µl. When this procedure

has been applied in flat spacetime the corresponding solitons scatter in a nontrivial way.

In particular, as it has been shown in [12, 13], in head-on collisions of N indistinguishable

solitons the scattering angle of the emerging solitons relative to the incoming ones is π/N .

As a result, it would be of great interest to see the scattering behaviour of the corresponding

solitons in the anti-de Sitter spacetime.

© Firstly, let us look at an example in which the function Ψ has a double pole in λ

and no others. In this case, Ψ has the form

Ψ = I +

2∑
k=1

Rk
(λ− µ)k (3.1)

– 4 –
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where Rk are 2×2 matrices independent of λ. Then, as in flat spacetime [12], Ψ corresponds
to a solution of (1.9) if and only if it factorizes as

Ψ(λ)=

(
1− µ̄− µ
(λ− µ)

q† ⊗ q
|q|2

)(
1− µ̄− µ
(λ− µ)

p† ⊗ p
|p|2

)
(3.2)

for some two vectors q and p. One way to obtain the form of these vectors is by taking

the formula (2.1) for n = 2 and setting µ1 = µ+ ε, µ2 = µ− ε, f1(ω1) = f(ω1) + εh(ω1),
f2(ω2) = f(ω2)− εh(ω2), with f and h being rational functions of one variable. In the limit
ε→ 0 the two vectors q and p can be obtained and are of the form:

q = (1 + |f |2)(1, f) + (µ̄− µ)
(
r2 f ′

(µ− u)2 + h
)
(f̄ ,−1)

p = (1, f). (3.3)

In this case, the constraint f2(ω2) − f1(ω1) → 0 as ε → 0 has to be imposed in order for
the resulting solution Ψ to be smooth for all (r, u, v), which is true due to (1.8). Note that

the solution depends on the parameter µ and on the two arbitrary functions f and h.

Another way to obtain the aforementioned solutions is by using the Uhlenbeck con-

struction [14]; ie by assuming that the function Ψ is a product of projectors which satisfy

first-order partial differential equations and can easily be solved [15].

In order to illustrate the above family of solutions, two simple cases are going to be

examined, by giving specific values to the parameters µ, f(ω) and h(ω).

(i) Let us study the simple case, where µ = i, f(ω) = ω and h(ω) = 0. Then, the

gauge invariant Higgs density −trΦ2 simplifies to

−trΦ2 = 32r2 [(r
2 + x2−t2+1)2 + 4t2][(r2 + x2−t2−1)2 + 4x2]
{[(r2 + x2 − t2)2 + 1 + 2t2 + 2x2]2 + 4r4}2 , (3.4)

which is time reversible. The time-dependent solution is a traveling soliton configuration

which for negative t, goes towards spatial infinity (r = 0); approaches it at t = 0 and then

bounces back at positive t. During this period the soliton configuration deforms.

(ii) Next, we investigate the solution which corresponds to a nontrivial scattering, at

least in the flat spacetime; for µ = i, f(ω) = ω and h(ω) = ω4. The picture consists of two

solitons with nontrivial scattering since, for large (negative) t, the −trΦ2 is peaked at two
points which changes to a lump at t = 0 and then two solitons emerge, for large (positive)

t, with the small one been shifted to the left.

This method can be extended to derive solutions which correspond to the case where

the function Ψ has a higher order pole in λ (and no others). Then, Ψ can be written as a

product of three (or more) factors with three (or more) arbitrary vectors (for more details,

see [13]).

© Secondly, let us construct a large family of solutions which correspond to the case

where µ̄k = µl. One way of proceeding is to take the solution (2.1) with n = 2, put

µ1 = µ+ ε, µ2 = µ̄− ε and take the limit ε→ 0. In order for the resulting Ψ to be smooth
it is necessary to take f1(ω1) = f(ω1), f2(ω2) = −1/f(ω2) − εh(ω2), where f and h are

– 5 –
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rational functions of one variable. On taking the limit we obtain a solution Ψ of the form

Ψ = I +
n1 ⊗m1
λ− µ +

n2 ⊗m2
λ− µ̄ (3.5)

where nk, mk for k = 1, 2 are complex valued two vector functions of the form

m1 = (1, f), m2 = (−f̄ , 1)
(
n1

n2

)
=

2(µ− µ̄)
4(1+|f |2)2−(µ−µ̄)2|w|2

(
2(1+|f |2) −(µ−µ̄)w̄
(µ−µ̄)w −2(1+|f |2)

)(
m1†

m2†

)
(3.6)

with

w ≡ 2r2

(µ− u)2 f
′ + h̄f2. (3.7)

So we generate a solution which depends on the parameter µ and the two arbitrary rational

functions f = f(ω) and h = h(ω̄).

For the choice: µ = i, f = ω, h = ω̄ the configuration consists of two solitons with

nontrivial scattering behaviour. Again, the quantity −trΦ2 is peaked at two points, for
(negative) t, which are still distinct at t = 0 and then two shifted (compared to the initial

ones at t = −3) solitons emerge, for (positive) t. Throughout the time-evolution their sizes
change.

Note that, the scattering solutions belong to a large family since f and h can be taken

to be any rational functions of ω. For further details and snapshots of the soliton scattering

look at [1].

4. Conclusions

Currently a great deal of attention has been focused on anti-de Sitter spacetimes since

they may occur in black hole and p-branes. For the case of Yang-Mills theory with N = 4
supersymmetries and a large number of colours it has been conjectured that gauge strings

are the same as the fundamental strings but moving in a particular curved space: the

product of five-dimensional anti-de Sitter space and a five sphere [16]. Then, using Poincaré

coordinates the anti-de Sitter solutions play the role of classical sources for the boundary

field correlators, as shown in [17]; while extensions of the corresponding statements can be

applied to gravity theories, like the black holes which arise in anti-de Sitter backgrounds.

In this paper, we illustrate the construction of time-dependent solutions related to

hyperbolic monopoles. In particular, families of solutions of the Bogomolny Yang-Mills-

Higgs equations in the (2+1)-dimensional anti-de Sitter space have been constructed and

their dynamics has been in studied in some detail. As a result, it would be interesting to

understand the role of higher poles in algebraic-geometry approach like twistor theory (for

example, the function Ψ (3.2) correspond to n = 2 bundles), and also to investigate the

construction of the corresponding solutions and their dynamics in de Sitter space. Finally,

it would be interesting to extend our construction in higher dimensional gauged theories

and investigate the scattering behaviour of the corresponding classical solutions and, also,

to consider and study its noncommutative version (see, for example, Ref. [18]).
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