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Abstract: Using the non-perturbative method of dressed states introduced in previous

publications, we study effects of the electromagnetic field on an atom, in the case the field

is described by an ensemble of non interacting harmonic oscillators. This method allows

to separate the whole system into the dressed atom and the dressed field, in terms of

which a non-perturbative approach is possible. When applied to study atomic behaviours

in cavities, the method accounts for experimentally observed inhibition of atomic decay

in small cavities.

PACS number(s): 03.65.Ca, 32.80.Pj

1. Introduction

In spite of its wide applicability, there are situations where the use of perturbation theory is

not possible, as in the low energy domain of Quantum Chromodynamics where confinement

of quarks and gluons takes place, or are of little usefulness, as for instance in Atomic physics,

in resonant effects associated with the coupling of atoms with strong radiofrequency fields.

These situations have led since a long time ago to attempts to by-pass the limitations of

perturbation theory, in particular in situations where strong effective couplings are involved.

In some non perturbative approaches in statistical physics and constructive field theory,

general theorems can be derived using cluster-like expansions and other related methods

[1]. In some cases, these methods lead to the rigorous construction of field theoretical

models (see for instance [2] and other references therein), but, in spite of the rigor and in

some cases the beauty of demonstrations, they are not of great usefulness in calculations

of a predictive character.
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In fact, from a phenomenological point of view there are situations even in the scope

of QED, where perturbation methods are of little usefulness, for instance, resonant effects

associated with the coupling of atoms with strong radiofrequency fields [3]. As remarked in

[4], the theoretical understanding of these effects using perturbative methods requires the

calculation of very high-order terms in perturbation theory, what makes the standard Feyn-

man diagrams technique practically unreliable. The trials of treating non-perturbativelly

systems of this type, are at the source of the idea of ”dressed atom”, introduced originally

in refs [5] and [6]. Since then this concept has been used to investigate several situations

involving the interaction of atoms and electromagnetic fields, as for instance, atoms embed-

ded in a strong radiofrequency field background [7, 8], and atoms in intense resonant laser

beams [9]. In order to give a precise mathematical definition and a clear physical meaning

to the idea of a dressed atom, a crucial aspect is the non-linear character of the problem

involved in realistic situations, which in general does not allow that a rigorous definition

of a ”dressed atom” could be given. Calculations in the situations described above involve

very high perturbative orders, which make the usual Feynman diagrams technique practi-

cally unreliable. A way to by-pass these mathematical difficulties, is to assume that under

certain conditions the coupled atom-electromagnetic field system may be approximated by

the system composed of a harmonic oscillator coupled linearly to the field by means of

some effective coupling constant g. This is the case in the context of the general QED

linear response theory, where the electric dipole interaction gives the leading contribution

to the radiation process ([10], [12]). Also, in a slightly different context, recently a signi-

ficative number of works has been spared to the study of cavity QED, in particular to the

theoretical investigation of higher-generation Schrodinger cat-states in high-Q cavities, as

has been done for instance in [13]. Linear approximations of this type have been applied

along the last years in condensed matter physics for studies of Brownian motion and in

quantum optics to study decoherence, by assuming a linear coupling between a cavity har-

monic mode and a thermal bath of oscillators at zero temperature, as it has been done in

[14] and [15].

In recent publications [20, 21] a method (dressed coordinates and dressed states) has

been introduced that allows a non-perturbative approach to situations of the type described

above, provided that the interaction between the parts of the system can be approximated

by a linear coupling. More precisely, the method applies for all systems that can be

described by a Hamiltonian of the form,

H =
1

2

[
p20 + ω

2
0q
2
0 +

N∑
k=1

(p2k + ω
2
kq
2
k)

]
− q0

N∑
k=1

ckqk, (1.1)

where the subscript 0 refers to the atom and k = 1, 2, ...N refer to the harmonic environ-

ment modes. The limit N →∞ in Eq.(1.1) is understood. In the case of the coupled atom
field system, this formalism recovers the experimental observation that excited states of

atoms in sufficiently small cavities are stable. It allows to give formulas for the probability

of an atom to remain excited for an infinitely long time, provided it is placed in a cavity of

appropriate size [21]. For an emission frequency in the visible red, the size of such cavity
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is in agreement with experimental observations [22, 23].

2. The eigenfrequencies spectrum

We consider for a moment, as in [20], the problem of a harmonic oscillator q0 of (bare)

frequency ω0 coupled to N other oscillators qi of frequencies ωi, i = 1, 2, ...N . In the limit

N → ∞ we recover our original situation of the coupling particle-bath after redefinition
of divergent quantities, in a manner analogous to naive mass renormalization in field the-

ories. The bilinear Hamiltonian (1.1) can be turned to principal axis by means of a point

transformation,

qµ = t
r
µQr , pµ = t

r
µPr; µ = (0, {k}), k = 1, 2, ...,N ; r = 0, ...N, (2.1)

performed by an orthonormal matrix T = (trµ). The subscript µ = 0 and µ = k refer

respectively to the particle and the harmonic modes of the bath and r refers to the normal

modes. In terms of normal momenta and coordinates, the transformed Hamiltonian in

principal axis reads,

H =
1

2

N∑
r=0

(P 2r +Ω
2
rQ
2
r), (2.2)

where the Ωr’s are the normal frequencies corresponding to the possible collective stable

oscillation modes of the coupled system. The matrix elements trµ are given by [20]

trk =
ck

(ω2k − Ω2r)
tr0 , tr0 =

[
1 +

N∑
k=1

c2k
(ω2k − Ω2r)2

]− 1
2

(2.3)

with the condition,

ω20 − Ω2r =
N∑
k=1

c2k
ω2k − Ω2r

. (2.4)

We take ck = η(ωk)
n, where η =

√
2g∆ω, g being a coupling constant and ∆ω the

(regular) spacing between two field frequencies. In this case the environment is classified

according to n > 1, n = 1, or n < 1, respectively as supraohmic, ohmic or subohmic. For

a subohmic environment the sum in Eq.(2.4) is convergent and the frequency ω0 is well

defined. For ohmic and supraohmic environments the sum in the right hand side of Eq.(2.4)

diverges what makes the equation meaningless as it stands, a renormalization procedure

being needed. In this case, as a first step we add and subtract the quantity Ω2r(ω
2
k)
n−1 to

the numerator of the right-hand side of Eq.(2.4). After changing the term corresponding to

the subtraction of Ω2r(ω
2
k)
n−1 to the left-hand side, Eq.(2.4) can be rewritten in the form,

ω20 − η2
N∑
k=1

(ω2k)
n − Ω2r(ω2k)n−1
ω2k − Ω2r

− Ω2r =
N∑
k=1

Ω2r(ω
2
k)
n−1

ω2k − Ω2r
. (2.5)

If n = 1 (ohmic system), this step is sufficient, the right-hand side of Eq.(2.5) is convergent

and we define from the left-hand side of Eq.(2.5) the renormalized frequency by Eq. (2.13)
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below. If n ≥ 1 further steps are necessary: we add and subtract to the numerator of the
right-hand side of Eq.(2.5) the quantity (Ω2r)

2(ω2k)
n−2 and we change the term correspond-

ing to its subtraction to the left-hand side. The process is continued until the series in

right-hand member of the resulting equation is convergent. This is attained after a number

of steps, and the result can be rewritten in the form,

ω20 − δω2 −Ω2r = η2Ω2[[n]]r

N∑
k=1

1

ω2k − Ω2r
, (2.6)

where we have defined the counterterm,

δω2 =
η2

4

N∑
k=1

[[n]]∑
α=1

Ω2αr ω
2(n−α)
k , (2.7)

with the notation [[n]] standing for the smallest integer containing n. Note that all the k-

dependence characteristic of the numerator of the right-hand side of Eq.(2.4) has moved to

the counterterm (2.7). From an analysis of Eq.(2.6) it can be seen that if ω20 > δω2 Eq.(2.6)

yields only positive solutions for Ω2, while if ω20 < δω2, Eq.(2.6) has a negative solution Ω2−.
This means that in this case there is a damped collective normal mode that does not allows

stationary configurations. Nevertheless it should be remarked that in a different context,

it is precisely this runaway solution that is related to the existence of a bound state in

the Lee-Friedrechs model [24]. This solution is considered in Ref. [25] in the framework

of a model to describe qualitatively the existence of bound states in particle physics. We

will not consider this situation. We consider the situation in which all normal modes are

harmonic which corresponds to take ω20 > δω2 and define the renormalized frequency

ω̄2 = ω20 − δω2, (2.8)

in terms of which Eq.(2.6) becomes,

ω̄2 − Ω2r = η2
N∑
k=1

Ω
2[[n]]
r

ω2k −Ω2r
. (2.9)

We see that in the limit N → ∞ the above procedure is exactly the analogous of naive
mass renormalization in Quantum Field Theory: the addition of a counterterm −δω2q20
allows to compensate the infinity of ω20 in such a way as to leave a finite, physically mean-

inful renormalized frequency ω̄. This simple renormalization scheme has been originally

introduced in ref.[26].

To proceed, we take the constant η as η =
√
2g∆ω, ∆ω being the interval between

two neighbouring bath frequencies (supposed uniform) and where g is some constant [with

dimension of (frequency)2−η]. For reasons that will become apparent later, we restrict
ouselves to the physical situations in which the environment frequencies ωk can be writen

in the form

ωk = 2kπ/L, k = 1, 2, ... . (2.10)
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Then using the formula[27],

N∑
k=1

1

(k2 − u2) =
[
1

2u2
− π

u
cot(πu)

]
, (2.11)

Eq.(2.9) can be written in closed form,

cot(
LΩ

2c
) =

Ω3

πgΩ2[[n]]
+

c

LΩ
(1− ω̄2LΩ2

πgcΩ2[[n]]
). (2.12)

For an ohmic environment we have ck = ηωk and δω
2 = Nη2. Taking in Eq. (2.6)

ω20 > Nη2, the renormalized oscillator frequency ω̄ is given by,

ω̄ =
√
ω20 −Nη2, (2.13)

and the eigenfrequencies spectrum for an ohmic environment is given by the equation,

cot(
LΩ

2c
) =

Ω

πg
+

c

LΩ
(1− ω̄2L

πgc
). (2.14)

The solutions of Eq.(2.14) or Eq.(2.12) with respect to Ω give the spectrum of eigenfre-

quencies Ωr corresponding to the collective normal modes.

The transformation matrix elements turning the material body-bath system to principal

axis is obtained in terms of the physically meaningful quantities Ωr, ω̄, after some rather

long but straightforward manipulations analogous to what has been done in [20]. They

read,

tr0 =
ηΩr√

(Ω2r − ω̄2)2 + η
2

2 (3Ω
2
r − ω̄2) + π2g2Ω2r

, trk =
ηωk

ω2k − Ω2r
tr0. (2.15)

3. The dressed states

To fix our framework and to give precise applications of our formalism, we study in this

paper an ohmic environment. The normalized eigenstates of our system (eigenstates of the

Hamiltonian in principal axis) can be written in terms of normal coordinates,

〈Q|n0, n1, ...〉 ≡ φn0n1n2...(Q, t) =
∏
s

[√
2ns

ns!
Hns(

√
Ωs
~
Qs)

]
Γ0(Q)e

−i∑s nsΩst, (3.1)

where Hns stands for the ns-th Hermite polynomial and Γ0 is the normalized vacuum

eigenfunction.

Next we intend to divide the system into the dressed particle and the dressed environ-

ment by means of some conveniently chosen dressed coordinates, q′0 and q′j associated re-
spectively to the dressed particle and to the dressed oscillators composing the environment.

These coordinates will allow a natural division of the system into the dressed (physically

observed) particle and into the dressed environment. The dressed particle will contain

automatically all the effects of the environment on it. Clearly, these dressed coordinates
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should not be introduced arbitrarilly. Since our problem is linear, we will require a linear

transformation between the normal and dressed coordinates (notice that this is not the

same transformation (2.1) linking the normal to the bare coordinates). Also, we demand

the physical condition of vacuum stability. We assume that at some given time (t = 0) the

system is described by dressed states, whose wavefunctions are defined by,

ψκ0κ1...(q
′) =
∏
µ

[
(2−κµκµ!)−

1
2Hκµ(

√
ω̄µ

~
q′µ)

]
Γ0(q

′) , (3.2)

where κµ , µ = 0 , {i} are non-negative integers, q′µ = q′0, q′i, ω̄µ = (ω̄, ωi) and Γ0 is the
invariant ground state eigenfunction introduced in Eq.(3.1). Note that the above wave-

functions will evolve in time in a more complicated form than the unitary evolution of the

eigenstates (3.1), since these wavefunctions are not eigenstates of the diagonal Hamiltonian

(1.1). It is precisely the non unitary evolution of these wavefunctions that will allow (see

below) a non-perturbative study of the radiation and dissipation processes of the particle.

To satisfy the physical condition of vacuum stability (invariance under a tranformation

from normal to dressed coordinates) we remember that the the ground state eigenfunction

of the system has the form,

Γ0(Q) ∝ e− 1
2~

∑N
r=0ΩrQ

2
r , (3.3)

and we require that the ground state in terms of the dressed coordinates should have the

form

Γ0(q
′) ∝ e− 1

2~

∑N
µ=0 ω̄µ(q

′
µ)
2

. (3.4)

From Eqs.(3.3) and (3.4) it can be seen that the vacuum invariance requirement is satisfied

if we define dressed coordinates by,

√
ω̄µq

′
µ =

N∑
r=0

trµ
√
ΩrQr . (3.5)

These dressed coordinates are new collective coordinates, different from the bare coordinates

q0 , {qi} describing the bare particle and the free field modes, and also from the normal
(collective) coordinates {Qr}. Indeed these dressed coordinates are related to the bare
coordinates by [20],

q′µ =
∑
ν

αµνqν ; αµν =
1√
ω̄µ

∑
r

trµt
r
ν

√
Ωr. (3.6)

As we have already mentioned above our dressed states, given by Eq.(3.2), are collec-

tive but non stable states, linear combinations of the (stable) eigensatates (3.1) defined in

terms of the normal modes. Moreover our dressed states have the interesting property of

distributing the energy initially in a particular dressed state, among itself and all other

dressed states with precise and well defined probability amplitudes. For instance, let us con-

sider the dressed state | 0, 0, ...1(µ), 0...〉, represented by the wavefunction ψ00...1(µ)0...(q′).
It describes the configuration in which only the dressed oscillator q′µ is in the first ex-
cited level. Then it is shown in [20] the following expression for the time evolution of the

– 6 –
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first-level excited dressed oscillator q′µ,

| 0, 0, ...1(µ), 0...〉 (t) =
∑
ν

fµν(t)| 0, 0, ...1(ν), 0...〉 (0)

fµν(t) =
∑
s

tsµt
s
νe
−iΩst. (3.7)

We choose the dressed states as physically meaningful and we test successfully this

hypothesis by studying the radiation process by an atom in a cavity. In both cases, of a very

large or a very small cavity, our results are in agreement with experimental observations.

Having introduced dressed coordinates and dressed states, in the next section we will apply

these concepts to study the time evolution of excited atomic states.

4. The radiation process

In this section we study the radiation process of the dressed particle when it is prepared

in such a way that initially it is in its first excited state. We shall consider two situations,

the particle in free space and the particle confined in a cavity of diameter L.

4.1 The particle in free space

Consider that the atom is initially in its first excited level. In this case the spectrum of

the given frequencies ωk has a continuous distribution [20], and the probability that the

dressed atom still remain in its first excited state at a time t � 1/ω̄, has the following
expression,

|f00(t)|2 =
(
1 +

π2g2

4ω̄2

)
e−πgt − e−πgt2

[
8g

ω̄4t3

(
sinκt+

πg

2κ
cos κt

)]
+
16g2

ω̄8t6
. (4.1)

We see from Eq. (4.1) that asymptotically the probability that the dressed particle be

still excited at a very large time t, obeys a power law, |f00(t)|2|t→∞ ≈ 16g2

ω̄8t6
. However,

in the weak coupling regime we are considering here, and for some values of g and ω̄, we

can see that this behaviour is dominant only for extremely large values of t, where the

probability |f00(t)|2 is vanishingly small. For lower values of t (but satisfying the condition
t � 1/ω̄), the leading behaviour is given by the exponential law. For instance let us

take ω̄ = 4.0 × 1014/s, g = ω̄/137. In this case the condition t � 1/ω̄ corresponds to
t� 2.5× 10−15s. A numerical analysis of Eq.(4.1) with these data shows that for t in the
interval 10−13s < t < 10−12s, the curve describing the function in Eq.(4.1) is practically
indistinguishable from the pure exponential exp(−πgt). For those values of g an ω̄ the
contribution from the monomial term in Eq.(4.1) is negligible. However, we could find

other values of g and ω̄ for which the behaviour of the probability |f00(t)|2 would depart
from an exponential law.
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4.2 Behaviour of the confined system

Let us now consider the ohmic system in which the particle is placed in the center of a

cavity of diameter L, in the case of a very small L, i.e. that satisfies the condition of being

much smaller than the coherence lenght, L << 2c/g. We note that from a physical point of

view, L stands for either the diameter of a spherical cavity or the spacing between infinite

paralell mirrors. To obtain the eigenfrequencies spectrum, we remark that from a graphical

analysis of Eq.(2.14) it can be seen that in the case of small values of L, its solutions are

very near the frequency values corresponding to the asymptots of the curve cot(LΩ2c ), which

correspond to the environment modes ωi = i2πc/L, except from the smallest eigenfrequency

Ω0. As we take larger and larger solutions for the eigenfrequencies Ωk , k = 1, 2, ..., they

are nearer and nearer to the asymptots corresponding to the field modes. For instance,

for a value of L of the order of 2× 10−2m and ω̄ ∼ 1010/s, only the lowest eigenfrequency
Ω0 is significantly different from the field frequency corresponding to the first asymptot,

all the other eigenfrequencies Ωk, k = 1, 2, ... being very close to the field modes k2πc/L.

For higher values of ω̄ (and lower values of L) the differences between the eigenfrequencies

and the field modes frequencies are still smaller. Thus to solve Eq.(2.14) for the larger

eigenfrequencies we expand the function cot(LΩ2c ) around the values corresponding to the

asymptots. We write,

Ωk =
2πc

L
(k + εk), k = 1, 2, .. (4.2)

with 0 < εk < 1, satisfying the equation,

cot(πεk) =
2c

gL
(k + εk) +

1

(k + εk)
(1− ω̄2L

2πgc
). (4.3)

But since for a small value of L every εk is much smaller than 1, Eq.(4.3) can be linearized

in εk, giving,

εk =
4πgcLk

2(4π2c2k2 − ω̄2L2 . (4.4)

Eqs.(4.2) and (4.4) give approximate solutions to the eigenfrequencies Ωk, k = 1, 2....

To solve Eq.(2.14) with respect to the lowest eigenfrequency Ω0, let us assume that it

satisfies the condition Ω0L/2c << 1 (we will see below that this condition is compatible

with the condition of a small L as defined above). Inserting the condition Ω0L/2c << 1

in Eq.(2.14) and keeping up to quadratic terms in Ω we obtain the solution for the lowest

eigenfrequency Ω0,

Ω0 =
ω̄√
1 + πgL2c

. (4.5)

Consistency between Eq.(4.5) and the condition Ω0L/2c << 1 gives a condition on L,

L� 2c
g
f ; f =

π

2

( g
ω̄

)21 +
√
1 +

4

π2

(
ω̄

g

)2  . (4.6)

Let us consider as in the preceding section, the situation of weak coupling, and let us

consider the situation where the dressed atom is initially in its first excited level. Then
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from Eq.(3.7) we obtain the probability that it will still be excited after a ellapsed time t,

|f00(t)|2 = (t00)4 + 2
∞∑
k=1

(t00)
2(tk0)

2 cos(Ωk −Ω0)t+
∞∑
k,l=1

(tk0)
2(tl0)

2 cos(Ωk −Ωl)t. (4.7)

In the case of weak coupling a physically interesting situation is when interactions of

electromagnetic type are involved. In this case, we take g = αω̄, where α = 1/137 is the

fine structure constant. Then the factor f multiplying 2c/g in Eq.(4.6) is ∼ 0.07 and the
condition L� 2c/g is replaced by the more restrictive one, L� 0.07(2c/g). For a typical
infrared frequency, for instance ω̄ ∼ 2, 0 × 1011/s, our calculations are valid for a value of
L, L� 10−3m.

From Eqs.(2.15) and using the above expressions for the eigenfrequencies for small L,

we obtain the matrix elements,

(t00)
2 ≈ 1− πgL

2c
; (tk0)

2 ≈ gL

πck2
. (4.8)

To obtain the above equations we have neglected the corrective term εk, from the expres-

sions for the eigenfrequencies Ωk. Nevertheless, corrections in εk should be included in

the expressions for the matrix elements tkk, in order to avoid spurious singularities due to

our approximation. This can be clearly seen from Eq.(2.15), due to the vanishing of the

denominator ω2k −Ω2r , for r = k, if we neglect terms depending on εk.
Using Eqs.(4.8) in Eq.(4.7), we obtain

|f00(t)|2 ≈ 1− πδ + 4( δ
π
− δ2)

∞∑
k=1

1

k2
cos(Ωk −Ω0)t+

π2δ2 +
4

π2
δ2

∞∑
k,l=1

1

k2l2
cos(Ωk − Ωl)t, (4.9)

where we have introduced the dimensionless parameter δ = Lg/2c � 1, corresponding
to a small value of L and we remember that the eigenfrequencies are given by Eqs.(4.2)

and (4.4). As time goes on, the probability that the material body be excited attains

periodically a minimum value which has a lower bound given by,

Min(|f00(t)|2) = 1− 5π
3
δ +
14π2

9
δ2. (4.10)

For a frequency ω̄ of the order ω̄ ∼ 4.00 × 1014/s (in the red visible), which corresponds
to δ ∼ 0.005 and L ∼ 1.0 × 10−6m, we see from Eq.(4.10) that the probability that the
material body be at any time excited will never fall below a value ∼ 0.97, or a decay prob-
ability that is never higher that a value ∼ 0.03. It is interesting to compare this result with
experimental observations in [22, 23], where stability is found for atoms emitting in the
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visible range placed between two parallel mirrors a distance L = 1.1 × 10−6m apart from
one another. For lower frequencies the value of the spacing L ensuring quasi-stability of the

same order as above, for the excited particle may be considerably larger. For instance, for

ω̄ in a typical microwave value, ω̄ ∼ 2, 00×1010/s and taking also δ ∼ 0.005, the probability
that the material body remain in the first excited level at any time would be larger than

a value of the order of 97%, for a value of L, L ∼ 2.0 × 10−2m. The probability that the
material body remain excited as time goes on, oscillates with time between a maximum

and a minimum values and never departs significantly from the situation of stability in the

excited state.

5. Concluding Remarks

We proposed a non-perturbative treatement of a quantum system consisting of an atom

coupled to a field described by non-interacting oscillators. We have used dressed states

which allow to divide the system into the dressed particle and the dressed field by means

of some conveniently chosen dressed coordinates, q′0 and q′j associated respectively to the
dressed atom and to the dressed oscillators composing the environment. In terms of these

coordinates a division of the system into the dressed (physically observed) atom and the

dressed field arises naturally. The dressed particle will contain automatically all the effects

of the environment on it. This formalism allows a non-perturbative approach to the time

evolution of a system that may be approximated by a particle coupled linearly to its envi-

ronment, in rather different situations as confinement of atoms in cavities or the Brownian

motion. In other words, underlying our dressed states formalism there is an unified way to

study two physically different situations, the radiation process and the Brownian motion.

We have approached one of these situations using the dressed states, and we have obtained

results in good agreement with experimental observations or with expected behaviours. For

atomic systems we recover with our formalism the experimental observation that excited

states of atoms in sufficiently small cavities are stable. We are able to give formulas for the

probability of an atom to remain excited for an extremely long time, provided it is placed

in a cavity of appropriate size. For an emission frequency in the visible red, the size of such

cavity is in agreement with experimental observations [21]. The generalization of the work

presented in this paper to the case of a generic (supraohmic or subohmic) environment and

finite temperature is in progress and will be presented elsewhere.
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[3] J.M. Winter, Ann. Phys. (Paris) 4, 745 (1959)

[4] C. Cohen-Tannoudji, ”Atoms in Electromagnetic Fields”, World Scientific publishing Co.

(1994)

[5] N. Polonsky, Doctoral thesis, Ecole Normale Supérieure, Paris (1964)

[6] S. Haroche, Doctoral thesis, Ecole Normale Supérieure, Paris (1964)

[7] C. Audoin, C. Cohen-Tannoudji, S. Haroche, J.P. Schermann, Phys. Rev. Lett., 24 861 (1970)

[8] C. Cohen-Tannoudji, S. Haroche, Phys. Rev. Lett., 24 974 (1970)

[9] S. Haroche, S. Liberman, ”Frontiers in Laser Spectroscopy”, eds. R. Balian, North Holland,

1977, p. 1

[10] A. McLachlan, Proc. Royal Soc. London, Ser. A 271, 381 (1963)

[11] J.M. Wylie, J.E. Sipe, Phys. Rev. A(30), 1185 (1984)

[12] W. Jhe, K. Jang, Phys. Rev. A53(2), 1126 (1996)

[13] J.M.C. Malbouisson, B. Baseia, J. Mod. Opt. 46, 2015 (1999)

[14] L. Davidovitch, M. Brune, J. M. Raimond, S. Haroche, Phys Rev. A 53, 1295 (1996)

[15] K. M. Fonseca-Romero, M. C. Nemes, J. G. Peixoto de Faria, A. N. Salgueiro, A. F. R. de

Toledo Piza, Phys Rev. A 58, 3205 (1998)

[16] P. Ullersma, Physica 32, 56, (1966); Physica 32, 74, (1966); Physica 32, 90, (1966)

[17] F. Haake, R. Reibold, Phys. Rev. A, 32, 2462 (1982)

[18] A.O. Caldeira, A.J. Legget, Ann. Phys. (N.Y) 149, 374 (1983)

[19] H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168. 115 (1988)

[20] N.P.Andion, A.P.C. Malbouisson and A. Mattos Neto, J.Phys.A34, 3735, (2001)

[21] G. Flores-Hidalgo, A.P.C. Malbouisson, Y.W. Milla, ”Stability of excited atoms in small

cavities”, physics/0111042. To appear in Physical Review A (2002)

[22] W. Jhe, A. Anderson, E.A. Hinds, D. Meschede, L. Moi, S. Haroche, Phys. Rev. Lett., 58,

666 (1987)

[23] R.G. Hulet, E.S. Hilfer, D. Kleppner, Phys. Rev. Lett., 55, 2137 (1985)

[24] R. Passante, F. Persico, Phys. Lett. A200, 87 (1995)

[25] A.K. Likhoded, G.P. Pronko, Int. Journ. Theor. Phys. 36, 2335 (1997)

[26] W. Thirring, F. Schwabl, Ergeb. Exakt. Naturw. 36, 219 (1964)

[27] M. Abramowitz, I.A. Stegun, eds., Handbook of Mathematical Functions, (Dover, New York,

1965)

– 11 –


