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Abstract: From a columnar approximation of the Euler equations of an incompressible

fluid with surface tension, we derive in the short-wave approximation a new classical 1+1

dimensional model equation for the motion of the surface. The side-band instability of

the Stokes’ waves is analyzed in terms of the physical parameters of the system.

1. Introduction

The nonlinear and dispersive propagation of surface waves in an ideal incompressible fluid

of depth h and density σ under the action of gravity g and surface tension T is a classical

subject of investigation in mathematical physics [1, 2, 3].

Surface wave are produced by the action of some external force on the (initial) plane

free surface of the fluid in equilibrium. The motion of the surface will be propagated over

the whole fluid in the form of waves which are called capillary-gravity waves. These waves

are driven by a balance between the action of gravity and surface tension and the liquid

inertia.

In this work we derive a new model equation which governs the asymptotic dynamics

of a monochromatic short capillary-gravity wave

uxt + cuxx =
3g

2ch
(1− 3θ)u+ 3h

2

4c
uxxu

2
x −
1

4
u2x −

1

2
uxxu , (1.1)

where u(x, t) is the fluid velocity on the surface (x and t are space and time variables),

subindices mean derivatives, θ = (T/σh2g) is the dimensionless Bond number and c =

(3T/σh)1/2 . Equation (1.1) has different regimes according to the values of θ. In this work

we consider only the case θ 6= 1/3, for which (1.1) is a dispersive system.
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2. The surface water wave problem

The dynamics of surface waves in an ideal fluid obeys nonlinear and dispersive equations.

The whole analytical solution of the problem is imposible. To simplify the enormous

complexity of the entire dynamics, multiscale asymptotic methods must be employed.

They produce asymptotic model equations (a.m.e) which describe only a small num-

ber of aspects. Most of them represent, for large t, balance between weak nonlinearities

and linear dispersion. Nowadays a.m.e for monochromatic long-wave small perturbations

of shallow dispersive fluids are very well known. They extend from the oldest Boussi-

nesq systems[4] or the ubiquitous Korteweg-de Vries[5] to the more recent Camassa-Holm

equation[6] in which nonlinear dispersion replaces a linear one.

In contrast, hardly anything is known about a.m.e. for nonlinear and dispersive dy-

namics of monochromatic short-waves. For the most part short-waves have been studied in

connection with modulation of short-wave trains [7, 8, 9, 10, 11]. Therefore the question

of the causes of this situation arise.

3. Asymptotic dynamics of short-waves

When one speaks about short-waves one is referring to an underlying space scale to which

the wave-lenght l or the wave-number k (k = 2π/l) of the linear plane wave solution

exp i(kx − ωt) must be compared. The frequency ω satisfies a dispersion relation ω =

W (k, p1, p2, ...) where pi are some physical parameters. In this case the unperturbed depth

h serves as a natural reference and we will consider h ∼ O(1) and k → ∞ or l → 0.
Multiscale methods are strongly based onW and on the associated notions of phase velocity

(vp) and group velocity (vg), which define asymptotic variables essential to handle the

nonlinear regime. These velocities have the sine qua non condition of being finite for

the aspect we are presently looking at. In studies of monochromatic asymptotics, infinite

dispersion (vp → ∞), not only restrain us to define asymptotic variables but also cannot
be compensated by weak nonlinerities. Therefore no a.m.e exist in this case. This is the

situation in the classical linearization of the Euler equations with surface tension in the

short-wave regime. The linear dispersion relation isW = [k(g+Tk2/σ) tanh(kh)]1/2 which

yields in the short-wave limit vp ∼ (Tk/σ)1/2 →∞.

4. Asymptotic variables

What is necesary to isolate the large time behavior of short-waves? We need to introduce

a space variable ζ of order one for very small x and a time variable τ of order one for

very large t. Thus for l = ε → 0, ζ = x/ε and τ = εt produce the description we are

looking for. Variables ζ and τ must be meaningful at the linear level. Consequently, they

must be compatible with and defined by the short-wave limit of W. The more complete

expression for W (k) leading to the most general expressions for ζ and τ is a Laurent series

with a simple pole for k → ∞ so W (k) = ak + b/k + c/k3 + . . ., where a, b, c . . . are real

constants[12, 13]. We consider W real and odd in k because the medium is isotropic and
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without dissipation. The solution found to avoid the transcendental dependence of W in

fonction of k was to employ the Green-Nagdhi conditions of linearization.

5. Asymptotic model equations for short capillary-gravity waves

Irrotational fluid flow and the introduction of velocity potential are assumed in deriving

W . They are not, however, the only hypothesis available for linearization. Using funda-

mental principles of continuum mechanics and Cosserat surface theories Green, Laws and

Nagdhi[14] and Green and Nagdhi[15] developed alternative reductions of the Euler equa-

tions leading to model equations with polynomial dispersion relations. Non irrotational

fluid flow moving in vertical columns were the two main hypothesis used.

Let the particles of the fluid medium be identified by a fixed rectangular Cartesian

system of center O and axes (x, y, z) with Oz the upward vertical direction. We assume

symmetry in y and we will only consider a sheet of fluid in the xz plane. This fluid sheet is

moving in a domain with a rigid bottom at z = 0 and an upper free surface at z = S(x, t).

The vector velocity is ~v = (u,w). The continuity equation (C) is: ux + wz = 0 and the

Newton equations (in the flow domain) are: (N1) σ(ut + uux + wuz) = −p∗x, and (N2)
σ(wt + uwx + wwz) = −p∗z − gσ, where p∗(x, z, t) is the pressure. The kinematic and
dynamic boundary conditions are: w(x, 0, t) = 0, and

St + uSx − w = 0, z = S(x, t), (5.1)

p∗ = p0 − TSxx

(1 + S2x)
3
2

, z = S(x, t). (5.2)

We assume that u is independent of z. This is known as columnar-flow Ansatz. It is

equivalent to consider the vertical component w as a linear function of z. This enables us

to satisfy exactly the equation of incompressibility and the boundary condition at the bed.

Hence u = u(x, t) and from (C) we have: w = −zux. The integration of (N1) in z from 0
to S(x, t) gives

σS(ut + uux) = −px + T [(1 + S2x)−
1
2 ]x. (5.3)

where p(x, t) =
∫ S(x,t)
0 p∗(x, z, t)dz − p0S(x, t). Now we multiply (N2) by z and integrate

on z

σ
S3

3
(−uxt − uuxx + u2x) = p+

TSSxx

[1 + S2x]
3
2

− gσS2

2
. (5.4)

The elimination of p between (5.3) and (5.4) gives

S(ut + uux) =
1

3
[S3(uxt + uuxx− u2x]x − gSSx +
T

σ
S[

Sxx

(1 + S2x)
3
2

]x. (5.5)
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Equations (5.1) and (5.5) are the Green-Nagdhi equations with surface tension. They

are a reduction of the Euler equations in a thin domain. In relation to shallow water

theories with dispersion (Boussinesq type equations), Green-Nagdhi with surface tension

incorporate finite dispersions in the long-wave and in the short-wave limits. The linear

dispersion relation is in this case W 2
GN = k2[gh + (Th/σ)k2]/[1 + (hk)2/3] and the phase

velocity for k →∞ reads WGN/k ∼ (3T/σh)1/2 +O(1/k2)
Now one can define asymptotic variables ζ = (1/ε)(x − vpt) and τ = εt and with the

expansion u = ε2(u0+ε
2u2+...) and S = h+ε

2(W0+ε
2W2+...) nonlinear dynamics of small

short capillary-gravity waves can be studied. Finally by perturbation in ε we obtain an

equation for u0(ζ, τ) from which we obtain the main equation (1.1) in laboratory variables.

6. Benjamin-Feir instability

In this section we study the resonant interaction occurring in a wave train (Stokes’ wave

train) with a narrow band of frequencies and wavelengths. Let us consider u(x, t) as a plane

wave. The nonlinears terms in (1.1) give rise to harmonics of the fundamental. Assume that

a disturbance is present consisting of modes with sideband frequences and wavenumbers

close to the fundamental .We can have interaction between harmonics and these sideband

modes. This interaction is likely to produce a resonant phenomenon manifesting itself by

the modulation of the plane wave solution. The exponencial growth in time of the mod-

ulation, originating from synchronous resonance between harmonics and sideband modes,

leads to the Benjamin-Feir instability[16]. A formal solutions can be given via an asymp-

totic expansion conducing to the nonlinear Schodinger equation (NLS)[17]. The particular

interest of NLS is the existence of a general and simple criterion enable to detect stability

or unstability of the monochromatic wave train. Let us seek for a solution of (1.1) under

the form of a Fourier expansion in harmonics of the fundamental exp i(kx−ωt) and where
the Fourier components are developed in a Taylor serie in powers of a small parameter γ

mesuring the amplitude of the fundamental

u =

l=p∑

l=−p

∞∑

p=1

exp il(kx− ωt)γpupl (ξ, τ). (6.1)

In (6.1), up−l = u∗pl (”star” denotes complex conjugation) and ξ and τ are slow variables
introduced through the stretching ξ = γ(x−vt) and τ = γ2t and where v will be determined
as a solvability condition. The expansions (6.1) includes fast local oscillations through the

dependence on the harmonics and slow variation (modulation) in amplitude taken into

account by the ξ, τ dependence of upl . Introducing now this expansion and the slow

variables in (1.1) we may proceed to collect and solve different order γ and l. We have

with

u11 = ψ(ξ, τ), a =
3g(1 − 3θ)
2ch

, b =
3h2

4c
, (6.2)

the following conditions of solvability

u10 = 0, ω = kc+
a

k
, v = 2c− ω

k
, u20 = −

k2

2a
|ψ|2, u22 =

k2

4a
ψ2, u21 =

i

k
ψξ. (6.3)
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At order γ = 3, l = 1 (using (6.3)) we obtain the NLS equation for ψ(ξ, τ) as solvability

condition

−iψτ − a

k3
ψξξ + (

1

8a
− b)k3ψ|ψ|2 = 0. (6.4)

The nature of solutions of NLS depends drastically of the sign of the product between

the coeficient of ψξξ and that of ψ|ψ|2. In this case this product is positive for

θ <
3

10
, (6.5)

and according to a well known stability criterion (see for exemple [18]) the Stokes’ wave train

is unstable, namely any slight deformation of the plane wave experiences an exponential

growth.

7. Conclusions

The equation (1.1) governs asymptotic behaviours of short capillary-gravity waves. It is

the short-waves analogous of the Korteweg-de Vries equation with surface tension which is

derived in the long wave limit. Solutions of equation (1.1) must be strongly depended on the

values of θ, because this parameter governs dispersion. For exemple for θ = 1/3 equation

(1.1) is a dispersionless system. We have derived equation (1.1) under the hyphotesis that

dissipative phenomena are small and the model represents asymptotic dynamics of linear

dispersion and nonlinearity. However since dissipative phenomena take place at small scales

viscosity must affect the asymptotic dynamics of short-waves. This is an important open

problem. The analogous of equation (1.1) in (2+1) dimensions is the equation

uxt =
3g

2ch
(1− 3θ)u+ 3h

2

4c
uxxu

2
x −
1

4
u2x −

1

2
uxxu− c

2
uyy , (7.1)

where u(x, y, t) is the fluid velocity on the surface. It is the short-waves analogous of

the Kadomtsev-Petviashvili equation with surface tension which is derived in the long

wave limit. Therefore the main question conserning equation (1.1) is: is equation (1.1) a

completely integrable system? A detailed study of all these open problems will be published

elsewhere.
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