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Abstract: Based on numerical observations of the eigenspectra of the SU(N) Perk-

Schultz model at the special value of the anisotropy q = exp(iπ(N − 1)/N), we formulate
a set of conjectures concerning the existence of free-fermion like eigenenergies. We prove

analytically part of these conjectures

1. Introduction

The Bethe ansatz and its generalizations (see [1]) proved along the years to be a

quite efficient method for the derivation of solutions of exact integrable quantum chains

and transfer matrices in statistical mechanics. In the framework of this ansatz the wave

functions are given in terms of combinations of plane waves whose quasi-momenta are

given by a highly non-trivial set of equations, i. e., the so called Bethe ansatz equations

(BAE). Despite the integrability of the model being a virtue that independs of its lattice

size, these BAE are in general quite complicated and analytical solutions are known only

in the thermodynamic limit, or in some exceptional cases, for general values of the lattice

size. These exceptions happen for the XXZ chain at the special values of its anisotropy

∆ = 0 and ∆ = −1/2. In the first case we can derive all the solutions of the BAE since the
model reduces to a free-fermion model. However for the special anisotropy ∆ = −1/2 the
model is interacting and the analytical solution for the BAE is known only for the ground

state [2, 3].

Motivated by these analytical solutions of the BAE, and seeking for new solutions, we

study numerically a generalization of the XXZ (SU(2)), namely the anisotropic Sutherland

model or the N -component Perk-Schultz model (SU(N)). In this case the BAE are even

more complicated than those of the XXZ chain (SU(2)), since it is of nested type (NBAE).
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Our numerical observations show us regularities in the eigenspectra that could be explained

analytically by the existence of free-fermion-like solutions, i. e., solutions where the roots

of the NBAE depends only on the value of the lattice size, like in the free-fermion model. In

this report we present in terms of conjectures our numerical observations, and we are going

to prove some of them. This report is organized as follows. In the next section we introduce

the model and formulate the associated NBAEs. In §3 we state nine conjectures that merge
from our extensive numerical investigations. In §4 and §5 we explain analytically two of
these conjectures and in §6 we present our conclusion.

2. The SU(N) Perk-Schultz model

The SU(N) Perk-Schultz model [7] is the anisotropic version of the SU(N) Sutherland

model [8] with the Hamiltonian, in a L-site chain, given by

Hpq =

L−1∑
j=1

Hj,j+1 + pHL,1 (p = 0, 1), (1)

where

Hi,j = −
N−1∑
a=0

N−1∑
b=a+1

(Eabi E
ba
j +E

ba
i E

ab
j − qEaai Ebbj − 1/qEbbi Eaaj ). (2)

The N×N matrices Eab have elements (Eab)cd = δac δbd and q = exp(iη) plays the role of the
anisotropy of the model. The cases of free and periodic boundary conditions are obtained

by setting p = 0 and p = 1 in (1), respectively. This Hamiltonian describes the dynamics of

a system containing N classes of particles (0, 1, ...,N − 1) with on-site hard-core exclusion.
The number of particles belonging to each specie is conserved separately. Consequently the

Hilbert space can be splitted into block disjoint sectors labeled by (n0, n1, ..., nN−1), where
ni = 0, 1, ..., L is the number of particles of specie i (i=0,1,...,N-1). The Hamiltonian (1) has

a SN symmetry due to its invariance under the permutation of distinct particles species,

that implies that all the energies can be obtained from the sectors (n0, n1, ..., nN−1), where
n0 ≤ n1 ≤ ... ≤ nN−1 and n0 + n1 + ...+ nN−1 = L.
At q = 1 the model is SU(N) invariant and for q 6= 1 the model has a U(1)⊗N−1

symmetry as a consequence of the above mentioned conservation. Moreover in the special

case of free boundaries (p = 0), the quantum chain (1) has a larger symmetry, being

invariant under the additional quantum SU(N)q symmetry. This last invariance implies

that all the eigenenergies belonging to the sector (n′0, n′1, ..., n′N−1) with n
′
0 ≤ n′1 ≤ ... ≤

n′N−1 are degenerated with the energies belonging to the sectors (n0, n1, ..., nN−1) with
n0 ≤ n1 ≤ ... ≤ nN−1, if n′0 ≤ n0 and n′0+n′1 ≤ n0+n1 and so on up to n′0+n′1+. . .+n′N−2 ≤
n0 + n1 + ...nN−2.
The NBAE that give the eigenenergies of the SUq(N) Perk-Schultz model in the sector

whose number of particles is (ni, i = 0, . . . ,N − 1) are given by (see e. g. [9],[10])
pk∏

j=1,j 6=i
F (u

(k)
i , u

(k)
j ) =

pk−1∏
j=1

f(u
(k)
i , u

(k−1)
j )

pk+1∏
j=1

f(u
(k)
i , u

(k+1)
j ), (3)
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where k = 0, 1, ...,N − 2 and i = 1, 2..., pk . The integer parameters pk are given by

pk =
k∑
i=0

ni, k = 0, 1, ...,N − 2; p−1 = 0, pN−1 = L. (4)

The functions F (x, y) and f(x, y) are defined by:

F (x, y) =
sin(x− y − η)
sin(x− y + η) , f(x, y) =

sin(x− y − η/2)
sin(x− y + η/2) , (5)

for periodic boundary conditions, and by

F (x, y) =
cos(2y)− cos(2x− 2η)
cos(2y)− cos(2x+ 2η) , f(x, y) =

cos(2y)− cos(2x− η)
cos(2y)− cos(2x+ η) , (6)

for the free boundary case. In using the NBAE (3) we deal with variables of different

order {u{k)j } (k = 0, . . . ,N − 2). The number of variables u(k)i of order k is equal to pk.

The whole set of NBAE consists of subsets of order k which contain precisely pk equations

(k = 0, 1, ...,N − 2).
The eigenenergies of the Hamiltonian (1) in the sector (n0, n1, ..., nN−1) are given in

terms of the roots {u(N−2)j }:

E = −
pN−2∑
j=1

(
−q − 1

q
+
sin(uj − η/2)
sin(uj + η/2)

+
sin(uj + η/2)

sin(uj − η/2)
)
, (7)

where to simplify the notation we write uj ≡ u(N−2)j , (j = 1, . . . , pN−2).
All the solutions of the NBAE (3) which are going to be described in this report satisfy

the additional ”free-fermion” conditions (FFC):

fL(ui, 0) = 1, i = 1, ..., pN−2. (8)

In this case, from (6) and (7) the corresponding eigenenergies of the Hamiltonian (1) for

the case of free boundaries are given by

E = −2
pN−2∑
j=1

(
− cos η + cos πkj

L

)
, 1 ≤ kj ≤ L− 1. (9)

On the other hand, for periodic boundaries we have found solutions for the SU(3) model

with η = 2π/3, and for this case relations (5), (7) and (8) give us

E = −
p1∑
j=1

(
1 + 2 cos

2πkj
L

)
, 1 ≤ kj ≤ L. (10)

With the additional set of equations merged from the FFC (8), the number of equations

in (3) and (8) exceeds the number of variables by pN−2. At the first glance we would expect
no chance to satisfy the whole system given by (3) and (8). But, surprisingly, the NBAE

possess some hidden symmetry.

– 3 –
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3. Conjectures merged from numerical studies

In this section we state a series of conjectures that are consistent with the exact

brute-force diagonalization of the Hamiltonian (1) with free (p = 0) and periodic (p = 1)

boundary conditions. Some of these conjectures are going to be proved in the following

sections. Let us consider separately the case of periodic and free boundaries.

3a - Periodic chain.

In the periodic case we only found important regularities in the eigenspectrum of the

SU(3) model at q = exp(i2π/3) and we state the following conjectures.

Conjecture 1. The Hamiltonian (1) with L sites at q = exp(2iπ/3) has eigenvectors (not

all of them) with energy and momentum given by

EI = −
∑
j∈I
(1 + 2 cos

2πj

L
), (11)

PI =
2π

L

∑
j∈I

j, (12)

with I being a subset of I unequal elements of the set {1, 2, ..., L}. The number I has to be
odd I = 2k+1 and the sector of appearance of the above levels is Sk ≡ (k, k+1, L−2k−1),
0 ≤ k ≤ (L− 1)/2.
The lowest eigenenergy among the above conjectured values (11) is obtained for the

particular set I
(k)
0 = {1, 2, ..., k} ∪ {L− k, ..., L}, since in this case all contributions −(1 +

2 cos 2πjL ) to (11) have the lowest possible values. The corresponding eigenstate has zero

momentum and energy given by

E
(k)
0 = −

∑
j∈I(k)0

(1 + 2 cos
2πj

L
) = −2k − 1− 2sin(π(2k + 1)/L)

sin(π/L)
. (13)

Conjecture 2. For arbitrary L = 3n + l (l = 1, 2, 3), the eigenenergy E
(n)
0 is the lowest

one in the sector Sn.

Conjecture 3. For arbitrary L = 3n+ l (l = 1, 2), the eigenenergy E
(n)
0 is the ground-state

energy of the model.

3b - Free boundaries.

In order to announce the conjectures let us define the special sectors

Sk = ([
k

N − 1], [
k + 1

N − 1], ..., [
k +N − 2
N − 1 ], L− k), k = 0, 1, ..., L, (14)

where [x] means the integer part of x. For example, for N = 4 and L = 7 the sectors are

S0 = (0, 0, 0, 7), S1 = (0, 0, 1, 6), S2 = (0, 1, 1, 5),

S3 = (1, 1, 1, 4), S4 = (1, 1, 2, 3), S5 = (1, 2, 2, 2),

S6 = (2, 2, 2, 1), S7 = (2, 2, 3, 0), (15)

– 4 –
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and due to the quantum symmetry of the Hamiltonian we have the special ordering:

S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ S4 ⊂ S5 ≡ S6 ⊃ S7. (16)

This means that, for example, all eigenvalues found in the sector S3 can also be found in

the sectors S4, S5 and S6, and all eigenvalues appearing in the sector S7 can also be found

in the sectors S6 and S5. The sectors S5 and S6 are totally equivalent. In this example let

us call the sectors S0, S1, S2, S3, S4, S5 as the left sectors and S6, S7 as the right ones.

We can generalize this definition to any L = Nn+r, where n and r are natural numbers

and r < N , obtaining L − n left sectors and n + 1 right ones. Now we can formulate the
conjectures merged form our bruteforce diagonalizations.

Conjecture 4. For L = Nn+ r (r = 1, 2, . . . ,N − 1) the Hamiltonian (1) with p = 0 and
q = exp(iπ/N) has eigenvalues given by

EI = −2
∑
j∈I
(cos(

π

N
) + cos(

jπ

L
)), (17)

where I is an arbitrary subset of the set {1, 2, ...L − 1}. If k is the number of elements of
the subset I and also Sk is a left sector then we find the eigenvalues (17) in the sectors

Sk, Sk+1, ...SL−n. On the other hand if Sk is a right sector then we find the eigenvalues
(17) in the sectors SL−n−1, SL−n, . . . , Sk+1.
For L = Nn we have slightly more delicate picture. In this case we have the left

sectors, the right sectors and a central one (n, n, n, n).

Conjecture 5. For L = Nn we can use conjecture 4 considering the central sector as a

left or a right one. This is possible due to the coincidence, apart of degeneracies, of the

eigenenergies in the eigensectors (n, n, n, . . . , n) and (n − 1, n, n, . . . , n+ 1).
Consider now the a special subsets I = {1, 2, 3, . . . , k}, k = 0, 1, . . . , L− 1. Due to the

conjectures 4 and 5 the Hamiltonian (1) has the corresponding eigenvalues

E(k) = −2
k∑
j=1

(cos(
π

N
) + cos(

jπ

L
)) = 1− 2k cos( π

N
)− sinπ(2k + 1)/2L

sinπ/2L
. (18)

We can now formulate the remarkable conjecture:

Conjecture 6. The eigenvalues (18) are the lowest eigenenergies in the special sectors

(14) of the Hamiltonian (1) with anisotropy q = exp(i(N − 1)π/N). Namely, for the left
sectors we have Emin(Sk) = E

(k) while for the right sectors Emin(Sk) = E
(k−1).

We can add here an additional conjecture:

Conjecture 7. The eigenvalues (18) for k = L − n − 1 gives the ground state energy of
the Hamiltonian:

E0 = 1 + 2(1− L+ n) cos( π
N
)− sinπ(2n+ 1)/2L

sinπ/2L
. (19)

The last of the special sectors is

SL = ([
L

N − 1], [
L+ 1

N − 1], ..., [
L +N − 2
N − 1 ], 0), k = 0, 1, ..., L. (20)

– 5 –
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In this sector we have only N − 1 classes of particles and the Hamiltonian (1) is reduced
effectively to a SUq(N − 1)-invariant quantum spin model. The sector is of right type and
due to conjecture 5 we can state the following conjecture:

Conjecture 8. The eigenvalue (18) for k = L − 1 gives the ground state energy of the
SUq(N − 1) Hamiltonian with anisotropy q = exp(i(N − 1)π/N). This eigenvalue can be
written as

E0 = −2(L− 1) cos( π
N
). (21)

For N = 3, for example, we get the XXZ model with anisotropy ∆ = −1/2 and E0 =
1 − L, a result that was first observed in [2] and produced quite interesting consequences
[3, 4].

In addition to the above conjectures we have also verified the following conjecture that

is valid for arbitrary values of the anisotropy.

Conjecture 9. The special sector (n0, . . . , nN−1) = (1, . . . , 1, L − N + 1) of the SUq(N)
model have energies

E =

N∑
j=1

(q +
1

q
− 2 cos(2π

L
kj)), 1 ≤ kj ≤ L, (22)

where q is arbitrary.

We are able to explain analytically the conjectures 1,4 and 9. For brevity in the

following two sections we are going to present these explanations for the conjectures 1 and

4.

3. Free-fermion spectrum for the SU(3) model with q = exp(2iπ/3): NBAE

solutions.

In this section we give an analytical explanation for the conjecture 1 of previous section.

These solutions happen in the sector (n0, n1, n2) = (k, k+1, L−2k−1) (0 ≤ k ≤ (L−1)/2) of
the periodic SU(3) model at q = exp(i2π3 ). In [5] exploring the functional equations related

to the NBAE we were able to explain partially this conjecture. These solutions however

do not belong to the numerically predicted sectors and do not satisfy the usual bounds

p0 = n0 < p1 = n0 + n1 < L. Moreover it is not clear if they correspond to non-zero norm

eigenfunctions. In this section we review [6] direct explanation of these conjectures without

the use of functional equations.

The NBAEs for the anisotropic SU(3) Perk-Schultz model with anisotropy q = exp(2iπ/3),

with roots satisfying the FFC, can be written as follows:

p0∏
j=1,j 6=i

f(vi, vj)

p1∏
j=1

f(vi, uj) = 1, i = 1, 2, . . . , p0, (23)

p1∏
j=1,j 6=i

f(ui, uj)

p0∏
j=1

f(ui, vj) = 1, i = 1, 2, . . . , p1, (24)

fL(ui, 0) = 1, i = 1, 2, ..., p1, (25)

– 6 –
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where p0 = n0, p1 = n0 + n1 and we have used the relation

F (x, y) = 1/f(x, y), (26)

which is valid for q = exp(2iπ3 ) or η =
2π
3 .

Before considering the general case let us restrict ourselves initially to the particular

eigensector (1, 2, L − 3). We have in this case p0 = n0 = 1 and p1 = n0 + n1 = 3. For this

simple case the first subsystem (23) consists of a single equation:

f(v, u1)f(v, u2)f(v, u3) = 1. (27)

From the definition of the function f given in (5) we can show that the last equation (27)

is equivalent to

cos(v + u1 − u2 − u3) + cos(v − u1 + u2 + u3) +
+cos(v − u1 − u2 + u3) = 0. (28)

It is clear that this relation has the S3 symmetry under the permutation of the variables

u1, u2 and u3. Surprisingly it has also the S4 symmetry under the permutation of the

variables u1, u2, u3 and v!

The three equations of the second subsystem (24) can be obtained from (23) by the

permutations v ↔ ui, so they also can be reduced to (28). Fixing the variables ui, i = 1, 2, 3,

satisfying the FFC (25) and finding v from equation (28) we obtain the solution for the

whole system (23-25) in the eigensector (1,2,L-3).

We show now that this method can be generalized to any sector (k, k+1, L− 2k− 1),
supporting the conjecture 1 of our previous paper [5]. Let us consider the set {xi, i =
1, . . . , p0 + p1} of variables formed by the union of the two systems of variables:

xi = vi (i = 1, 2, . . . , p0),

xi+p0 = ui (i = 1, 2, . . . , p1). (29)

In terms of these variables the system of equations (23-25) becomes

r(xi) = f(xi, xi), i = 1, 2, . . . , p0 + p1, (30)

fL(xi, 0) = 1, i = p0 + 1, . . . , p0 + p1, (31)

where r(x) =
∏p0+p1
j=1 f(x, xj). The first of these subsystems (30) possess Sp0+p1 permuta-

tion symmetry. We intend to show now that many of the equations in this subsystem are

dependent, and for p0 = k and p1 = 2k+1 we can also satisfy independently the FFC (31).

From (5) we may write

r(x) =

p0+p1∏
j=1

sin(x− xj − π/3)
sin(x− xj + π/3) =

p0+p1∏
j=1

b− qbj
qb− bj , (32)

where for convenience we introduced the new variables

b = exp(2ix), bj = exp(2ixj), q = exp(2iπ/3). (33)

– 7 –
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The first subsystem (30) becomes now a system of algebraic equations:

p0+p1∏
j=1

(bi − q bj) +
p0+p1∏
j=1

(q bi − bj) = 0 i = 1, 2, . . . , p0 + p1. (34)

Using the standard symmetric functions:

S0 = 1,

S1 = b1 + b2 + . . . + bp0+p1,

S2 = b1 b2 + b1 b3 + . . . bp0+p1−1 bp0+p1,

. . . (35)

Sm =
∑

1≤i1<i2<...im≤p0+p1
bi1 bi2 . . . bim,

...

Sp0+p1 = b1 b2 ...bp0+p1,

we can rewrite (34) as

p0+p1∑
m=0

(−1)mSmbp0+p1−mi (qm + qp0+p1−m) = 0. (36)

Adding this last equation to the identity

q−p0−p1
p0+p1∏
j=1

(bi − bj) =
p0+p1∑
m=0

(−1)mSmbp0+p1−mi q−p0−p1 = 0, (37)

we obtain

p0+p1∑
m=0

(−1)mSmbp0+p1−mi (qm + qp0+p1−m + q−p0−p1) = 0. (38)

For q = exp(2iπ/3) we have the following possibilities

qm + qp0+p1−m + q−p0−p1 = 3q−p0−p1 for p0 + p1 +m = 3n,

qm + qp0+p1−m + q−p0−p1 = 0 for p0 + p1 +m 6= 3n. (39)

Let p0 + p1 = 3k + r, where k is an integer and r ∈ {−1, 0, 1}. Inserting (39) into (38) we
obtain

k∑
µ=0

(−1)µS3µb−3µi = 0 for r = 0,

k−1∑
µ=0

(−1)µS3µ+2b−3µi = 0 for r = 1, (40)

k−1∑
µ=0

(−1)µS3µ+1b−3µi = 0 for r = −1,

– 8 –
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where i = 1, 2, ..., p0+p1. We then see that the subsystem (30) can be satisfied if we impose

S3ν+ρ = 0, ν = 0, 1, ..., k − 1, (41)

where ρ = 0 for r = 0, ρ = 2 for r = 1 and ρ = 1 for r = −1. Since S0 = 1 it is not possible
to obtain solutions of this type for L = 3k (ρ = 0) and we have to limit ourselves to the

cases where p0 + p1 6= 3k.
Let us fix now p1 variables ui, satisfying the FFC (31). Variables vi, i = 1, 2, ..., p0 can,

in principle, be found from the system (41). In order to do that we use the decomposition

of the symmetric functions depending on two set of variables, namely

S0 = 1,

S1 = s1 + σ1,

S2 = s2 + s1σ1 + σ2,

... (42)

Sm =

min{m,p1}∑
k=max{0,m−p0}

sm−kσk,

...

Sp0+p1 = sp0σp1,

where σi are the symmetric combination of the known variables ui and si are the symmetric

combinations of the unknown variables vj . Consequently the system (41) can be reduced

to a linear system for symmetric functions si, i = 1, 2, ..., p0. This system can be solved if

the number of variables p0 is greater or equal to the number of equations k. Then we have

the system

p0 = n0, p1 = n0 + n1, n0 ≤ n1,
p0 + p1 = 3k ± 1, k ≤ p0. (43)

These relations give us the constraint n0 = k and n1 = k + 1, and consequently p0 + p1 =

2n0 + n1 = 3k + 1, implying that solutions of (41) exist only for ρ = 2. These solutions

happen in the sector (k, k+1, L− 2k− 1). Consider for illustration the case k = 2 (p0 = 2
and p1 = 5). We have 5 variables u1, ..., u5, which we fix with the FFC (31), and 2 unknown

variables v1, v2. Using (42) we can write the system (41) as follows:

S2 = s2 + s1σ1 + σ2 = 0,

S5 = s5 + s4σ1 + s3σ2 = 0. (44)

The functions σ1, σ2, σ3, σ4 and σ5 we know, so we have 2 linear equations for s1 = v1+ v2
and s2 = v1v2.

This conclude our proof of conjecture 1. The extension of this conjecture to the free

boundary case can be done along the same lines [6].

4. Free-fermion solutions of the NBAE for generic q

– 9 –
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In this section we explain the conjecture 9 of §3. Differently from the other conjectures,
where the free-fermion solutions were found for a specific value of q, we are going present

free-fermion solutions of the NBAE that are valid for arbitrary values of q. These solutions

are valid only for free boundary conditions and will happen in the special sectors of the

SU(N)q model where the number of particles of each distinct specie is at most one, except

for one of the species, that can be considered as the background (holes for example). The

S(U)q symmetry ensures that the general sector containing all these solutions is the special

sector where (n0, . . . , nN−1) = (1, . . . , 1, L−N + 1), that gives from the definition (4) the
values

p0 = 1, p1 = 2, ..., pN−2 = N − 1, pN−1 = L. (45)

For this case the NBAE (3) consist of N − 1 subsets (k = 0, 1, . . . ,N − 1) of equations
where the kth subset has precisely k + 1 equations.

To illustrate our procedure let us consider for simplicity the SU(4) model in the sector

(1, 1, 1, L−3). In this case we have three subsets (k = 0, 1, 2) and three groups of variables
(u(0), u(1), u(2)):

1 = f(w, v1)f(w, v2), (46)

F (v1, v2) = f(v1, w) × f(v1, u1)f(v1, u2)f(v1, u3),
F (v2, v1) = f(v2, w) × f(v2, u1)f(v2, u2)f(v2, u3), (47)

F (u1, u2)F (u1, u3) = f(u1, v1) f(u1, v2),

F (u2, u1)F (u2, u3) = f(u2, v1) f(u2, v2), (48)

F (u3, u1)F (u3, u2) = f(u3, v1) f(u3, v2),

where we write w instead of u(0), vi instead of u
(1)
i (i = 1, 2) and ui instead of u

(2)
i

(i = 1, 2, 3). Inserting (6) into the first equation (46) we obtain promptly two possibilities:

sin 2w = 0, (49)

cos 2v1 + cos 2v2 − 2 cos η cos 2w = 0. (50)

We do not intend to consider for the moment the first possibility (49). Imposing the

condition (50) we can check (eliminating, for example the variable w) that for (v1, v2, w)

satisfying (50), besides (46) we have also two additional equalities, namely

F (v1, v2) = f(v1, w),

F (v2, v1) = f(v2, w). (51)

Consequently the second subsystem becomes:

1 = f(v1, u1) f(v1, u2) f(v1, u3),

1 = f(v2, u1) f(v2, u2) f(v2, u3). (52)

– 10 –
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We will show bellow that the set of 5 equations formed by the second (52) and the third

subsets (48) contain only two independent equations, and consequently we may fix the

variables ui(i = 1, 2, 3) by imposing the FFC (31 and find the two variables v1 and v2 from

these equations. The remaining variable w is then obtained from (50). Consequently we

find the free-fermion eigenspectra (9) for arbitrary values of q or η.

The previous analysis can be extended for the sector (1, . . . , 1, L −N + 1) for general
SU(N)q by exploring the general theorem:

For any k fixed numbers u1, u2, ...uk one can find k−1 numbers v1, v2, ..., vk−1 satisfying
the two set of equations

k∏
j=1

f(vi, uj) = 1 (i = 1, 2, ..., k − 1), (53)

k∏
j=1,j 6=i

F (ui, uj) =

k−1∏
j=1

f(ui, vj) (i = 1, 2, ..., k). (54)

Leaving the proof of the above theorem for the moment, we can see that applying this

theorem to (k − 1) known numbers v1, . . . , vk−1, one can find the numbers w1, . . . , wk−2
satisfying the equations

k−1∏
j=1

f(wi, vj) = 1 (i = 1, 2, ..., k − 2), (55)

k−1∏
j=1,j 6=i

F (vi, vj) =

k−2∏
j=1

f(vi, wj) (i = 1, 2, ..., k − 1). (56)

Multiplying the ith (i = 1, . . . , k− 1) equation of the sets (53) and (56) we obtain literally
one of the subset of the NBAE:

k−1∏
j=1,j 6=i

F (vi, vj) =
k−2∏
j=1

f(vi, wj)
k∏
j=1

f(vi, uj) (i = 1, 2, ..., k). (57)

Applying the above theorem k − 1 times we obtain a tower of numbers:

u1, u2, u3......uk−2, uk−1, uk
v1, v2.....vk−2, vk−1
w1, ...wk−2
............

.........

y1, y2

z

This imply that if we begin by fixing the k = N−1 variables ui (i = 1, . . . , k), satisfying the
FFC (31) we obtain by using recursively the construction (57) the solution of the NBAE

– 11 –
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of the SU(N) Perk-Schultz model, with free boundaries, in the sector (n0, n1, . . . , nN−1) =
(1, 1, . . . , 1, L−N +1). The free-fermion-like energies are given by (9) for arbitrary values
of η. The previous results (48) and (52) are just consequences of the particular case where

k = 3.

Let us now prove the announced theorem. Let us fix {uj}, j = 1, 2, ..., k. The equation
(53) can then be written as follows

P (vi) = 0, (i = 1, 2, ..., k) (58)

where

P (v) ≡
k∏
j=1

(
cos 2uj − cos(2v − η)

)
−

k∏
j=1

(
cos 2uj − cos(2v + η)

)
. (59)

The use of the symmetric functions

S0 = 1

S1 = cos 2u1 + cos 2u2 + · · ·+ cos 2up0+p1
· · ·
Sp0+p1 = cos 2u1 cos 2u2 · · · cos 2up0+p1 (60)

allow us to write

P (v) ≡
k∑
m=1

(−1)m+1Sk−m
(
cosm(2v − η)− cosm(2v + η)

)
. (61)

Since cos(2v−η)−cos(2v+η) = 2 sin η sin 2v and am−bm = (a−b)(am−1+am−2b+...+bm−1)
we have

P (v) ≡ sin 2v p(cos 2v), (62)

where p(t) is a polynomial of degree k − 1. We can factorize this polynomial, and apart
form a multiplicative constant (Ω)we can write

P (v) = Ω sin 2v
k−1∏
i=1

(cos 2v − cos 2bi). (63)

Now (58) is easily solved: vi = bi, i = 1, 2, ..., k − 1.
Consider now the right side of the second equation (54). The relation (63) allow us to

write
k−1∏
i=1

f(uj, vi) =

k−1∏
i=1

f(uj, bi) =

k−1∏
i=1

cos(2ui − η)− cos 2bi
cos(2ui + η)− cos 2bi =

=
P (2uj − η)
sin(2uj − η)

sin(2uj + η)

P (2uj + η)
. (64)

Using the expression (59) for P (v) we obtain:

k−1∏
i=1

f(uj, vi) =
sin(2uj + η)

sin(2uj − η)

×
∏k
i=1(cos 2ui − cos(2uj − 2η)) −

∏k
i=1(cos 2ui − cos 2uj)∏k

i=1(cos 2ui − cos 2uj)−
∏k
i=1(cos 2ui − cos(2uj + 2η))

. (65)

– 12 –
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Since
∏k
i=1(cos 2ui − cos 2uj) = 0, we obtain

k−1∏
i=1

f(uj, vi) = −sin(2uj + η)
sin(2uj − η)

k∏
i=1

cos 2ui − cos(2uj − 2η)
cos 2ui − cos(2uj + 2η) . (66)

One can also check that

sin(2uj + η)

sin(2uj − η) = −
cos 2uj − cos(2uj + 2η)
cos 2uj − cos(2uj − 2η) , (67)

so that (66) can be written as

k−1∏
i=1

f(uj, vi) =

k∏
i=1,i 6=j

F (uj , ui), (68)

concluding the proof of the theorem.

We can also calculate [6] the eigenfunction corresponding to a given free-fermion energy

E =

N−1∑
j=1

εj =

N−1∑
j=1

(q +
1

q
− xj − 1

xj
), (69)

where

xj = exp(i
πkj

L
), 1 ≤ kj ≤ L− 1. (70)

The wavefunction is given by

|ψ{x1,...,xN−1} >=
L∑

m1,...,mN−1=1
q−f(m1,...,mN−1)

×det

∣∣∣∣∣∣∣∣∣

Ψ1(m1) Ψ1(m2) · · · Ψ1(mN−1)
Ψ2(m1) Ψ2(m2) · · · Ψ2(mN−1)
· · · · · · · · · · · ·

ΨN−1(m1) ΨN−1(m2) · · · ΨN−1(mN−1)

∣∣∣∣∣∣∣∣∣
|m1, . . . ,mN−1 >,

where |m1, . . . ,mN−1 > are the vector basis representing the configuration where the ith
particle is located at site mi (i = 1, . . . ,N − 1, 1 ≤ mi ≤ L). The Slater determinants

entering in (71) depend upon the set of one-particle amplitudes Ψj(m), that apart from a

normalization factor are given by

Ψj(m) =

(
1− q

xj

)
xmj − (1− qxj) /xmj , (71)

and the factor f(m1, . . . ,mN−1) is the minimum number of pair permutations (mi,mj)→
(mj ,mi) necessary to put them in an increasing order m1 < m2 < · · · < mN−1.

7. Conclusions
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We have found many solutions of the NBAE for the SU(N) Perk-Schultz model. How-

ever despite the eigenenergies being free-fermion like, the corresponding eigenvectors are

not simple to derive. Actually we are able to show [11] that the appearance of these spe-

cial free-fermion-like energies in the eigenspectra of the SU(N) quantum chain with free

boundaries is due to existence of a factorizable eigenvalue of the associated transfer ma-

trix of the inhomogeneous SUq(N) model at q = exp(i
π(N−1)
N ). The components of this

special eigenvector provide us with the recurrence relations necessary for the calculation

of the wave vector corresponding to the free-fermion solutions [11]. We believe that as a

byproduct, these observations will provide a road for the calculation of the components of

the ground state eigenfunction of the XXZ chain with anisotropy ∆ = −12 , where many
interesting conjectures were raised in the literature [3].
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