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Abstract: We derive the non-local conserved charges in the sine-Gordon model and

affine Toda field theories on the half-line. They generate new kinds of symmetry algebras

that are coideals of the usual quantum groups. We show how intertwiners of tensor

product representations of these algebras lead to solutions of the reflection equation. We

describe how this method for finding solutions to the reflection equation parallels the

previously know method of using intertwiners of quantum groups to find solutions to the

Yang-Baxter equation.

1. Introduction

During the last year the search for the quantum group symmetry of integrable quantum field

theories with boundaries has finally succeeded1. MacKay and Short in their contribution to

these proceedings [15] discuss the non-local symmetry charges of the principal chiral model

on the half-line. In this contribution we present the non-local charges of the sine-Gordon

model and affine Toda field theories on the half-line.

These non-local charges generate symmetry algebras of a very unusual kind. In contrast

to all other known symmetry algebras they are not bialgebras. We will refer to them

as boundary quantum groups. They are coideals of the usual quantum groups. Just as

quantum groups lead to solutions of the Yang-Baxter equation, our new boundary quantum

groups lead to solutions of the reflection equation, also known as the boundary Yang-Baxter

equation.

The Yang-Baxter equation appears throughout 1+1 dimensional integrable systems

in two roles. Firstly to define commuting transfer matrices one requires L operators that

satisfy the Yang-Baxter equation [2]. Secondly particles scatter in a factorizable way,

the consistency condition on the factorization is given by the Yang-Baxter equation [23].

∗Speaker.
1Earlier calculations for the sine-Gordon model at the free fermion point were done in [16]
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In section 2 we will review the Yang-Baxter equation in the specific context of particle

scattering and we will recall how quantum group symmetry provides an easy way to find

its solutions [13].

In order to restrict the domain of an integrable system to the half line or an interval

one must use solutions of the reflection equation in addition to solutions of the Yang-

Baxter equation. Such reflection matrices are used to describe factorizable scattering of

particles from the boundary [5, 12]. Reflection matrices are also needed for the definition

of commuting transfer matrices [21]. We describe the reflection equation in section 3,

emphasizing how it parallels the Yang-Baxter equation. We show how boundary quantum

groups allow us to find solutions of the reflection equation by simply solving a linear

intertwining equation.

In section 4 we briefly review the non-local charges of the sine-Gordon model [3] that

generate the affine algebra Uq(ŝl2). We then show how the generators of the boundary

quantum groups for the sine-Gordon model restricted to the half-line by a general integrable

boundary condition can be constructed from these by using first order perturbation theory

[7]. These boundary quantum groups have been used to determine sl2 reflection matrices

for arbitrary spin [9] and to rederive the sine-Gordon soliton reflection matrix [7]. Section 5

generalizes the calculation to affine Toda theories on the half-line [7], where it has been used

to derive the reflection matrices for the vector solitons in a
(1)
n [7], d

(1)
n [6], c

(1)
n and a

(2)
2n−1

affine Toda theories. In section 6 we show that the half line conserved charges described

in sections 4 and 5, where they were found using first order boundary perturbation theory,

are in fact exact [7].

2. The Yang-Baxter equation and quantum groups

In this section we describe the Yang-Baxter equation

=

Figure 1: Yang-Baxter equation.

using a particle interpretation to aid clarity. Figure 1

shows two three-particle scattering processes in two di-

mensions. The two scattering processes differ only in the

order in which the individual two-particle scatterings take

place. In an integrable theory the scattering amplitude

will be independent of this order and this is expressed by

the equality in the figure. Each of the lines in the figure

stands for a vector space spanned by all the quantum particle states in the same multiplet.

Each vector space carries a representation of the symmetry group describing a particle

multiplet. Let us denote the three vector spaces by V µθ1 , V
ν
θ2
, V λθ3 . Here µ, ν and λ label the

different multiplets and the θi give the rapidities of the particles. Two or more adjacent

lines, for example those representing the spaces V µθ1 and V
ν
θ2
, are tensor products of those

spaces, V µθ1⊗V νθ2 .
Crossing lines in the diagram represent scattering of two particles and can be described

by a mapping from the vector space representing the initial two-particle state to the vector
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space representing the final two-particle state,

Řµν(θ1 − θ2) : V µθ1 ⊗ V νθ2 → V νθ2 ⊗ V
µ
θ1
. (2.1)

Because of Lorentz invariance the matrix Řµν depends only on the difference θ1 − θ2 of
the spectral parameters. This matrix, describing the scattering of two particles, is usually

referred to as the two-particle S-matrix. The equation in figure 1 becomes

(
Řµν(θ1 − θ2)⊗ 1

) (
1⊗ Řµλ(θ1 − θ3)

)(
Řνλ(θ2 − θ3)⊗ 1

)
=
(
1⊗ Řνλ(θ2 − θ3)

)(
Řµλ(θ1 − θ3)⊗ 1

) (
1⊗ Řµν(θ1 − θ2)

)
. (2.2)

This is the Yang-Baxter equation. We used the symbol Ř to denote the scattering matrix

because a solution of the Yang-Baxter equation is conventionally referred to as an R-matrix.

Further details on R-matrices and the Yang-Baxter equation can be found throughout the

literature (for example [2, 23, 22]).

The Yang-Baxter equation (2.2) is non-linear, and so it is difficult to solve directly.

However in the physical context of particle scattering in an integrable theory described

above it is possible that the scattering matrix is uniquely determined by the symmetry of

the theory. It is then enough to solve the symmetry requirement in order to find a solution of

the Yang-Baxter equation. This is of great advantage because the symmetry requirement

corresponds to a simple linear equation. The quantum groups generated by non-local

conserved charges in certain integrable quantum field theories describe such symmetries.

Examples are the Yangians Y (g) in the principal chiral model and the quantum affine

algebras Uq(ĝ) in affine Toda field theory.

Let us denote the quantum group by A. The vector spaces V µθ are representations of
A, also called A-modules. The tensor product spaces V µθ1⊗V νθ2 formed by the two-particle
states should also be A-modules. Therefore A is required to be a bialgebra for which there
is defined a coproduct

4 : A → A⊗A . (2.3)

The coproduct encodes how a symmetry charge acts on multiparticle states and in the case

of non-local charges this is usually not cocommutative.

Symmetry requires that the scattering matrix (2.1) is an A-module homomorphism,
also called an intertwiner. Thus it has the property that for all Q∈A

QνµŘµν = ŘµνQµν (2.4)

where Qµν denotes the action of Q on V µθ1⊗V νθ2. We want the quantum group symmetry to
be strong enough to determine the scattering matrix uniquely. Thus there should be only a

unique solution of the intertwining equation (2.4). This is ensured by Schur’s lemma if the

tensor product module V µθ1⊗V νθ2 is irreducible for generic values of the spectral parameters.
This is know to be the case for Yangians Y (g) and quantum affine algebras Uq(ĝ).

As stated above, in integrable quantum field theories the scattering matrix Řµν satisfies

the Yang-Baxter equation because the ordering of the two-particle scattering processes does
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not matter. We can now give an independent mathematical reason for why Řµν satisfies the

Yang-Baxter equation. The tensor products V µθ1⊗V νθ2⊗V λθ3 are irreducible representations
of A, for generic values of the spectral parameters. Thus the two sides of the Yang-
Baxter equation represent two possible maps from one irreducible representation to another.

Therefore, by Schur’s Lemma, they must be proportional to each other. The constant of

proportionality can be shown to be equal to 1 by consideration of the determinants of the

two sides of (2.2) and the behaviour of the constant in the classical limit [13].

3. The reflection equation and boundary quantum groups

Figure 2 shows two different ways in which a two-

=

Figure 2: Reflection equation

particle reflection process can factorize into single-particle

reflection and two-particle scattering processes. In inte-

grable quantum field theories the corresponding ampli-

tudes must be equal. The incoming lines represent vec-

tor spaces V µθ1, V
ν
θ2
. As in the Yang-Baxter equation the

spaces carry a representation of the symmetry algebra de-

scribing a particle multiplet, labelled by the Greek letters.

The spaces also carry a spectral parameter θi, giving the rapidity of the corresponding par-

ticle. After reflection from the boundary the particles will have reversed their rapidities

and thus the outgoing lines represent vector spaces V µ̄−θ1 , V
ν̄
−θ2. The boundary also carries a

vector space, W λ, to describe properties such as boundary spin or boundary bound states.

Note that this space does not have a rapidity parameter as the boundary is assumed to be

stationary. As in the Yang-Baxter equation adjacent lines, including the boundary, repre-

sent tensor products of the relevant vector spaces. The point of contact of the boundary

with and incoming and an outgoing line indicates reflection of a particle from the boundary,

this process can be described with a mapping similar to (2.1),

Kµν(θ) : V µθ ⊗W λ → V µ̄−θ ⊗W λ. (3.1)

Kµν are the reflection matrices or K-matrices. Intersection of two lines, incoming or out-

going, represents scattering of the particles and, as in the previous section, is represented

by Ř. The equation in figure 2 then reads

(
Řν̄µ̄(θ1 − θ2)⊗ 1

) (
I ⊗Kµλ(θ1)

) (
Řµν̄(θ1 + θ2)⊗ 1

) (
I ⊗Kνλ(θ2)

)
=
(
I ⊗Kνλ(θ2)

) (
Řνµ̄(θ1 + θ2)⊗ 1

) (
I ⊗Kµλ(θ1)

) (
Řµν(θ1 − θ2)⊗ 1

)
. (3.2)

This is the reflection equation. Further details on the reflection equation can be found

throughout the literature (for example [5, 12, 21]).

The reflection equation (3.2) is non-linear. As so many other similarities hold between

this and the Yang-Baxter equation it might be expected that a method analogous to the

intertwiners, as described in the previous section, may exist to find K-matrices by the

solution of a linear equation. To this end we are motivated to find boundary quantum

– 4 –
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groups, B, analogous to A, the quantum group of the bulk theory [21]. B is the symmetry
algebra of the boundary theory. It is generated by the non-local charges that are still

conserved after the introduction of the boundary. The vector space associated with the

boundary W λ is a representation of the algebra B, called a B-module. The tensor product
V µθ ⊗W λ, describing a particle and the boundary, must also be a B-module. We know that
the space V µθ is an A-module so B is required to be an A coideal, for which there exists a
coproduct,

4 : B → A⊗ B . (3.3)

This coproduct describes the action of the non-local charges on states containing particles

and the boundary. This observation explains why the symmetry algebra of an integrable

quantum field theory with a boundary does not have to be a bialgebra: the particles away

from the boundary still transform in representations of the symmetry of the theory on the

whole line.

Just as the R-matrix was an A-module homomorphism it is now clear that the sym-
metry requires that the K-matrix is a B-module homomorphism, or intertwiner. So for all
Q̂∈B the K-matrix has to satisfy

Q̂µ̄λKµλ = KµλQ̂µλ, (3.4)

where Q̂µλ denotes the action of Q̂ on V µθ ⊗W λ.
If V µθ1⊗V νθ2⊗W λ are irreducible representations, for generic θi, then by Schur’s Lemma a

solution of the linear intertwining equation (3.4) is also a solution of the reflection equation

(3.2). The argument is exactly analogous to the one presented in the previous section to

show that a solution of eq. (2.4) is a solution of the Yang-Baxter equation.

The problem of finding reflection matrices has now been reduced to finding the bound-

ary quantum group, and the solution of the linear equation (3.4). The following properties

have to hold in order for B to lead us to solutions of the reflection equation:

• B must be an A coideal,

• Intertwiners Kµλ(θ) : V µθ ⊗W λ → V µ̄−θ⊗W λ must exist,

• the tensor product representations V µθ1⊗V νθ2⊗W λ must be irreducible for generic val-
ues of the spectral parameters θi.

We will now go on to find such boundary quantum groups by studying the symmetries in

concrete integrable quantum field theories on the half-line.

4. Sine-Gordon field on the half line

We seek to find the boundary quantum group for the sine-Gordon field restricted to the

half line by an integrable boundary condition. Initially, however, we consider the whole

– 5 –
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line theory. It is useful to view the sine-Gordon model as a perturbation of the free bosonic

field theory, with action [22, 3] 2

S =
−1
8π

∫∫ (
(∂xφ)

2 + (∂tφ)
2
)
dx dt− Φpertbulk , (4.1)

where

Φpertbulk =
λ

4π

∫∫ (
eiβ̂φ(x,t) + e−iβ̂φ(x,t)

)
dx dt . (4.2)

The model has non-local conserved charges Q±, Q̄±, their expressions can be found in [3].
These charges together with the Lorentz boost D and the topological charge

T =
β̂

2π

∫
∂xφ dx (4.3)

generate the quantum affine algebra Uq(ŝl2) with zero center.

The action of the non-local conserved charges on two-soliton states are given by the

coproduct

4 (Q±) = Q± ⊗ I + q±T ⊗Q± ,
4 (Q̄±) = Q̄± ⊗ I + q∓T ⊗ Q̄± , (4.4)

4 (T ) = T ⊗ I + I ⊗ T,

where

q = e2iπ(1−β̂
2)/β̂2 . (4.5)

We will treat the sine-Gordon model on the half-line with general integrable boundary

conditions as a perturbation of the free field theory on the half line with Neumann boundary

condition ∂xφ̃|x=0 = 0. Note that to avoid confusion we decorate the fields in the theory
on the half-line with a tilde. The Neumann boundary condition selects among all possible

solutions on the whole line exactly those that are invariant under parity P : x 7→ −x. We
find that the easiest way to do quantum calculations in the theory with Neumann boundary

condition is to view it as the parity invariant subsector of the theory on the whole line.

The perturbing term Φpertbulk in (4.2) is invariant under parity transform, P, and so we
can also use it as the perturbing term to obtain the sine-Gordon model on the half-line

with Neumann boundary condition.

The whole line conserved charges transform under parity as

P : T 7→ −T, P : Q± 7→ Q̄∓, P : Q̄± 7→ Q∓. (4.6)

The parity invariant combinations Q̃± = Q± + Q̄∓ are well defined in the half-line theory
and are conserved [7].

2We use the conventions of [3]. The contribution to these proceedings by Bajnok, Palla, and Takács on

the boundary sine-Gordon model [1] uses more standard conventions. The relations are that β̂ = β/
√
4π,

φ =
√
4πΦ, and λ = 2πm2/β2.

– 6 –
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We now replace the Neumann condition with the more general integrable boundary

condition [12]

∂xφ̃(x, t)|x=0 = iβ̂λb
(
ε−eiβ̂φ̃(0,t)/2 − ε+e−iβ̂φ̃(0,t)/2

)
, (4.7)

where ε+ and ε− are two arbitrary boundary parameters 3. We treat this as a boundary
perturbation on the Neumann half line problem discussed above, with action Sε given by

Sε = S0 +Φ
pert
bound , (4.8)

where S0 is the action of the Neumann boundary theory and

Φpertbound =
λb
2π

∫ (
ε−eiβ̂φ̃(0,t)/2 + ε+e−iβ̂φ̃(0,t)/2

)
dt . (4.9)

We can then use first order boundary perturbation theory [12, 20] to find the half line

conserved charges [7]

Q̂± = Q± + Q̄∓ + ε̂±q±T , (4.10)

where

ε̂± =
λbε±β̂2

2π(1 − β̂2) . (4.11)

These expressions were first conjectured in [16]. We denote the symmetry algebra generated

by these charges by Bεq(ŝl2). Bεq(ŝl2) is a coideal subalgebra of Uq(ŝl2) because

4
(
Q̂±
)
= Q̂± ⊗ I + q±T ⊗

(
Q̂± − ε̂±I

)
∈ Uq(ŝl2)⊗ Bεq(ŝl2) . (4.12)

This boundary quantum group can now be used to calculate reflection matrices by

solving the intertwining relation (3.4). Choosing the representation W λ to be the trivial

representation (corresponding to the boundary ground state) and the representation V µ to

be the spin 1/2 representation (in which the sine-Gordon solitons are known to transform)

one rederives the known sine-Gordon soliton reflection matrix of Ghoshal and Zamolod-

chikov [12]. The relations between our parameters ε̂± and the parameters η and Θ in [12]
are ε̂± = f(λ, β̂) cos(η± iΘ) where f(λ, β̂) is a complicated function of λ and β̂. By taking
the representation V µ to be higher spin representations of Uq(ŝl2) one obtains new sl2
K-matrices [9].

5. Affine-Toda fields on the half line

We will now follow a similar procedure to find boundary quantum groups Bεq(ĝ) for every
affine Lie algebra ĝ by deriving the non-local symmetry charges in affine Toda field theories.

3These are related to the boundary parameters M0 and ϕ0 used in [1] by exp(iβϕ0) = ε+/ε− and
M2
0 = (λb/π)

2ε+ε−.

– 7 –
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For every affine Lie algebra ĝ of rank n there is an affine Toda field theory describing

a n-component bosonic field in 1+1 dimensions with action [17]

S =
−1
8π

∫∫ (
(∂xφ)

2 + (∂tφ)
2
)
dx dt− Φpertbulk , (5.1)

where

Φpertbulk =
λ

4π

∫∫  n∑
j=0

e−iβαj ·φ/|αj |
2


 dx dt. (5.2)

The αj are the simple roots of ĝ projected onto the root space of g, the finite dimensional

Lie algebra. The theory has non-local conserved charges Qj and Q̄j for j = 0, 1, . . . , n [3].

These, along with the Lorentz boost D and the topological charges

Tj =
β

2π

∫
αj · ∂xφ dx, (5.3)

generate the quantum affine algebra Uq(ĝ) with zero centre [11]. The non-local charges act

on two-soliton states through the coproduct

4 (Qj) = Qj ⊗ I + qTj ⊗Qj ,
4 (Q̄j) = Q̄j ⊗ I + qTj ⊗ Q̄j , (5.4)

4 (Tj) = Tj ⊗ I + I ⊗ Tj .

For ĝ = ŝl2 the affine Toda theory becomes the sine-Gordon model and the conserved

non-local charges can be equated to those in section 4 as Q0 = Q+, Q1 = Q−, Q̄0 = Q̄−,
Q̄1 = Q̄+ and T0 = −T1 = T .
We are interested in restricting the field, for simply laced ĝ, to the half line with the

boundary condition

∂xφ̃(x, t)|x=0 = −iβλb
n∑
j=0

εjαje
−iβαj ·φ̃(0,t)/2 , (5.5)

where the εj are n+1 free boundary parameters. It is known that these boundary conditions

preserve the integrability of the theory only if all |εj | = 1 or if all εj = 0 [4].
As for the sine-Gordon field we define the Neumann half line theory using parity

invariance. We then add a boundary perturbation giving the action,

Sε = S0 +Φ
pert
bound , (5.6)

where S0 is the action of the Neumann theory and

Φpertbound =
λb
2π

∫  n∑
j=0

εje
−iβαj ·φ̃(0,t)/2


 dt . (5.7)

– 8 –
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Using first order boundary perturbation theory the non-local conserved charges have been

found to be [7]

Q̂j = Qj + Q̄j + ε̂j q
Tj
j , (5.8)

where

ε̂j =
λb β̂

2

2π(1 − β̂2) εj. (5.9)

While we have performed the calculation only in the case of simply laced ĝ, we believe the

expressions (5.8) to be correct in all cases.

We denote the symmetry algebra generated by the charges Q̂j, j = 0, 1, . . . , n by

Bεq(ĝ)⊂Uq(ĝ). In [6] we introduced the name ‘quantum affine reflection algebras’ for these
algebras to express that they are subalgebras of quantum affine algebras which at the same

time are reflection equation algebras in the sense of Sklyanin [21]. The algebra Bεq(ĝ) is a
coideal subalgebra of Uq(ĝ) because

4
(
Q̂j

)
= Q̂j ⊗ I + qTj ⊗

(
Q̂j − ε̂jI

)
∈ Uq(ĝ)⊗ Bεq(ĝ), (5.10)

as can easily be checked using (5.4).

To first order in boundary perturbation theory the charges Q̂j are conserved for ar-

bitrary values of the boundary parameters εj. However we found that the intertwining

relation (3.4) does not always have a solution. In fact we found that for simply laced ĝ the

boundary parameters ε̂j are fixed up to sign by the requirement that a reflection matrix

for the vector representation should exist. This is the quantum generalization of the result

of [4] which showed that the boundary condition preserves classical integrability only if the

boundary parameters εj are fixed up to sign. For non-simply laced ĝ we find that some of

the parameters ε̂j can be free and this again parallels the classical results of [4].

The boundary quantum groups Bεq(ĝ) have been successfully used to rederive the vector
representation reflection matrices for a

(1)
n affine Toda theories [7] and to find previously

unknown reflection matrices for d
(1)
n [6], c

(1)
n and a

(2)
2n−1 affine Toda theories.

6. Non-perturbative derivation of non-local conserved charges

In sections 4 and 5 we have described how the boundary quantum group charges can be

found using first order boundary perturbation theory. One might be worried that at higher

order perturbation theory additional terms could appear in the expression for the half line

conserved charges. The fact that the charges have already been used successfully to derive

new K-matrices for the vector representation does not rule out the presence of additional

terms because these terms could vanish in the vector representations. We can, however,

derive the expression for the charges also in a non-perturbative way by using the vector

soliton reflection matrix. This derivation, which we will present briefly in this section,

shows that the expressions (5.8) for the symmetry charges are exact and only the relation

– 9 –
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(5.9) between the bare and the renormalized boundary parameters may receive higher order

corrections [7].

Using the vector soliton reflection matrix Kµ(θ) we construct a matrix

B
µ
θ = L̄

µ̄
θ (K

µ(θ)⊗ 1)Lµθ ∈ Hom(V µθ , V µ̄−θ)⊗ Uq(ĝ) , (6.1)

with

Lµθ = (π
µ
θ ⊗ id)(R(x)) ∈ End(V µθ )⊗ Uq(ĝ) , (6.2)

L̄µ̄θ = (π
µ̄
−θ ⊗ id)(Rop(x)) ∈ End(V µ̄−θ)⊗ Uq(ĝ) , (6.3)

where πνθ denotes the representation π
ν
θ : Uq(ĝ) → End(V νθ ), R(x) = (Ψx⊗id)(R), Ψx is

a homomorphism defined by Ψx(Qj) = xQj, Ψx(Q̄j) = x
−1Q̄j, Ψx(Tj) = Tj , R is the

universal R-matrix [14] and Rop is the opposite universal R-matrix found by swapping the
tensor factors in R. It can now be shown that any K-matrix that satisfies the reflection
equation (3.2) commutes with all elements of Bµθ for any θ [7]. Thus if we expand B

µ
θ in

terms of the spectral parameter, then every term in the expansion will commute with any

K-matrix. Thus every term in the expansion is a symmetry charge. In the cases of ĝ = a
(1)
n

and ĝ = d
(1)
n we have checked explicitly that the first term in this expansion reproduces

exactly the charges (5.8) derived previously.

A similar construction to the above has recently also been used in [18] to study other

properties of the boundary quantum groups.

7. Summary and Outlook

We have presented a brief review of the Yang-Baxter equation describing how the concept

of quantum group arises and how solutions of the Yang-Baxter equation can be found as

intertwiners of representations of that group. We also presented a review of the reflection

equation and introduced the concept of a boundary quantum group as a coideal subalgebra

of the quantum group. We showed that solutions to the reflection equation can be found

as intertwiners of representations of the boundary quantum group. We showed how the

conserved non-local charges for affine Toda theories on the half line can be found using first

order perturbation theory, and how these generate boundary quantum groups. Finally we

showed that these conserved charges are exact.

There is much work remaining in this area, reflection matrices for the vector repre-

sentations of b
(1)
n , a

(2)
2n , d

(2)
n+1 and the exceptional algebras have yet to be found. Boundary

quantum groups corresponding to Dirichlet type boundary conditions need to be studied

[19], as do higher representations of the presently known groups.
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