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Abstract: A super–algebraic formulation of the N = 2 supersymmetric unconstrained

matrix (k|n,m)–MGNLS hierarchies (nlin.SI/0201026) is established. Recursion opera-
tors, fermionic and bosonic symmetries as well as their superalgebra are constructed for

these hierarchies.

1. Introduction

TheN = 2 supersymmetric unconstrained matrix (k|n,m)–Generalized Nonlinear Schödin-
ger ((k|n,m)–MGNLS) hierarchies were proposed in [1] by exhibiting the corresponding
matrix pseudo–differential Lax–pair representation in terms of N = 2 unconstrained super-

fields for the bosonic isospectral flows. These hierarchies generalize and contain as limiting

cases many other interesting N = 2 supersymmetric hierarchies discussed in the litera-

ture. When matrix entries are chiral and antichiral N = 2 superfields, these hierarchies

reproduce the N = 2 chiral matrix (k|n,m)-GNLS hierarchies [2, 3], and in turn the latter
coincide with the N = 2 GNLS hierarchies of references [4, 5] in the scalar case k = 1.

When matrix entries are unconstrained N = 2 superfields and k = 1, these hierarchies

are equivalent to the N = 2 supersymmetric multicomponent hierarchies [6]. The bosonic

limit of the N = 2 unconstrained (k|0,m)–MGNLS hierarchy reproduces the bosonic ma-
trix NLS equation elaborated in [7] via the gl(2k+m)/(gl(2k)×gl(m))–coset construction.
The N = 2 (1|1, 0)–MGNLS hierarchy is related to one of three different existing N = 2
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supersymmetric KdV hierarchies – the N = 2 α = 1 KdV hierarchy – by a reduction

[6, 1, 8].

Apart from the Lax–pair representation for the isospectral bosonic flows of the N = 2

unconstrained (k|n,m)–MGNLS hierarchies, at present we do not know other quantities
and/or data (if any) which could characterize their integrable structure, like, e.g. their

super–algebraic formulation, bosonic and fermionic symmetries, Hamiltonian structures,

recursion operators, etc. (although part of these are known for some of above–mentioned

limiting cases).

The present talk addresses these problems. We obtain a super–algebraic formulation

of the N = 2 unconstrained (k|n,m)–MGNLS hierarchies. Using it and the superalgebraic
methods developed in refs. [9, 10, 11, 12, 13, 14, 15] and especially [16] we derive the

superalgebra of fermionic and bosonic symmetries as well as the recursion operators for

these hierarchies.

The paper is organized as follows. In Section 2.1 we present a short summary of

the pseudo–differential Lax–pair approach to the N = 2 unconstrained (k|n,m)–MGNLS
hierarchies. In Section 2.2 we rewrite the corresponding spectral equation in a local matrix

form and establish its super–algebraic structure which is then used in Section 2.3 and 2.4

to derive the superalgebra of the symmetries and the recursion operators of the hierarchy,

respectively. In Section 2.5 we discuss supersymmetry and locality of the isospectral flows.

In Section 3 we summarize our results and discuss open problems.

2. The N = 2 unconstrained (k|n,m)–MGNLS hierarchies

2.1 Pseudo–differential Lax pair representation

The Lax–pair representation for the bosonic flows of the N = 2 supersymmetric uncon-

strained (k|n,m)–MGNLS hierarchies is [1]
∂
∂tp
L = [Ap, L], L = I∂ + FDD∂−1F, Ap = (L

p)≥0 + res(Lp), p ∈ N (2.1)

where the subscript ≥ 0 denotes the sum of purely differential and constant parts of the
operator Lp, and res(Lp) is its N = 2 supersymmetric residue, i.e. the coefficient of

[D,D]∂−1. Here, F ≡ FAa(Z) and F ≡ F aA(Z) (A,B = 1, . . . , k; a, b = 1, . . . , n + m)

are rectangular matrices which entries are unconstrained N = 2 superfields, I is the unity

matrix, IAB ≡ δAB , and the matrix product is implied, for example (FF )AB ≡
∑
a FAaF aB .

The matrix entries are Grassmann even superfields for a = 1, . . . , n and Grassmann odd

superfields for a = n + 1, . . . , n + m. Thus, fields do not commute, but rather satisfy

FAaF bB = (−1)dadbF bBFAa where da and db are the Grassmann parities of the matrix
elements FAa and F bB , respectively, da = 1 (da = 0) for odd (even) entries. Fields depend

on the coordinates Z = (z, θ, θ) of N = 2 superspace. The volume element in superspace is

dZ ≡ dzdθdθ. Finally, D,D are the N = 2 supersymmetric fermionic covariant derivatives

D =
∂

∂θ
− 1
2
θ
∂

∂z
, D =

∂

∂θ
− 1
2
θ
∂

∂z
, D2 = D

2
= 0,

{
D,D

}
= − ∂

∂z
≡ −∂. (2.2)

– 2 –
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The algebra of the flows in (2.1) is abelian

[ ∂∂tm ,
∂
∂tn
] = 0. (2.3)

The Lax pair representation (2.1) may be seen as the integrability condition for the follow-

ing linear system:

Lψ1 = λψ1, (2.4)
∂
∂tp
ψ1 = Apψ1 (2.5)

where λ is the spectral parameter and the eigenfunction ψ1 is the Baker-Akhiezer function

of the hierarchy.

2.2 Matrix formulation of the spectral equation

Let us rewrite the spectral equation (2.4) in a matrix form in N = 2 superspace

LΨ = 0, LΨ = 0, Ψ =


ψ1
ψ2

ψ3
ψ4
ψ5

 (2.6)

with two N = 2 odd Lax operators L and L

L = D +Aθ, L = D +Aθ (2.7)

whose odd connections Aθ and Aθ are restricted to be local functionals of the original

superfield matrices F and F and their {D,D}–derivatives. One finds that the eigenvalue
equation (2.4) is equivalent to (2.6) provided the connections are chosen as

Aθ = Λ+A, Aθ = Λ+A,

Λ =


0 −1 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1
0 0 0 0 0

 , Λ =


0 0 0 −1 0
λ 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 λ 0

 ,

A = 0, A =


0 0 0 0 0

0 0 −F 0 0

D F 0 0 IF 0
0 0 0 0 0

FID F 0 −DF FF 0

 (2.8)

where Λ and Λ are constant matrices and we have introduced the notation

Iab := (−1)daδab. (2.9)

– 3 –
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Using eqs. (2.7–2.8) one can derive the even Lax operator

Lz := −(L̂ L+ L̂L) = ∂ − λE +A, LzΨ = 0 (2.10)

where the transformation L → L̂ simply amounts to a change in the sign of the Grassmann-
even matrix entries in L and

E =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 , A =


0 0 F 0 0

0 0 DF 0 0

−DD F DIF 0 −DIF −F
−FDIF 0 DF −FF 0

−DFDIF FDIF DDF −DFF −FF

 . (2.11)

One important remark is in order: the connection A (2.10–2.11) does not depend on
the spectral parameter λ, and this property is crucial for the construction that will be carried

out. We would like to emphasize that there are infinitely many representations equivalent

to (2.8) which generically do not possess this property1. The representation (2.8) is just

adapted to use the approach developed in [14, 15, 16] (see also references therein).

Remark: there is, however, another representation with properties analogous to the rep-

resentation just described. We consider the matrix

K =


1 0 0 0 0

0 1 0 0 0

F 0 1 0 0

0 0 0 1 0

λ 0 −F 0 1

 , (2.12)

and transform the operators in (2.7) and (2.10) to

L′ = K̂LK−1 = D +


0 −1 0 0 0

0 0 0 0 0

−DF −IF 0 0 0

λ+ FF 0 −F 0 −1
−(DF )F −λ DF 0 0

 ,

L ′ = K̂LK−1 = D +


0 0 0 −1 0
0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

L′z = KLzK−1 = ∂ − λE +


−FF 0 F 0 0

−(DF )F 0 DF 0 0

DDF DIF 0 −DIF F

D(FF ) 0 DF −FF 0

D((DF )F ) 0 −DDF −(DF )F 0

 . (2.13)

1In other words, in most cases the spectral parameter appears in field-dependent terms.
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All matrix entries in formulae (2.8), (2.11) and (2.13) are rectangular or square blocks.

For instance, all 1’s stand for the k × k identity matrix. A short inspection shows that
after interchanging the components ψ2 and ψ5 (ψ2 ↔ ψ5) of Ψ (2.6), the matrices in Lz
and L′z have the following block structure

(
A B

C D

)
:=


even odd

(2k+n)×(2k+n) (2k+n)×(2k+m)
odd even

(2k+m)×(2k+n) (2k+m)×(2k+m)

 (2.14)

and zero supertrace

Str

(
A B

C D

)
:= Tr(A)− Tr(D) = 0, (2.15)

so that they belong to the superalgebra

G = sl(2k + n|2k +m). (2.16)

The constant matrix E (2.11) defines the splitting

G = Ker(adE)⊕ Im(adE), E2 = E,

Ker(adE) =


∗ ∗ 0 ∗ ∗
∗ ∗ 0 ∗ ∗
0 0 ∗ 0 0
∗ ∗ 0 ∗ ∗
∗ ∗ 0 ∗ ∗

 , Im(adE) =


0 0 ∗ 0 0
0 0 ∗ 0 0
∗ ∗ 0 ∗ ∗
0 0 ∗ 0 0
0 0 ∗ 0 0

 (2.17)

which possesses the properties

[Ker(adE), Ker(adE)} ∈ Ker(adE),
[Ker(adE), Im(adE)} ∈ Im(adE),
[Im(adE), Im(adE)} ∈ Ker(adE),
(adE)

2
∣∣∣
Im(adE)

= I
∣∣∣
Im(adE)

(2.18)

and

Ker(adE) = s
(
gl(2k|2k) ⊕ gl(n|m)

)
. (2.19)

In what follows we will use the homogeneous gradation of the loop superalgebra

G ⊗ C[λ, λ−1] (2.20)

with the grading operator

d = λ ∂∂λ . (2.21)

– 5 –
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The matrices λE and A (2.11) entering into the even Lax operator Lz (2.10) belong to the
subspaces with grades 1 and 0 respectively

[d, λE] = λE, [d,A] = 0. (2.22)

We shall construct a non–local gauge transformation G, which commutes with E,

GEG−1 = E and which is fixed by the requirement that it transforms A in (2.11) to a
connection Ã belonging to Im(adE).

Ã = GAG−1 +G∂G−1, Ã ∈ Im(adE). (2.23)

With this aim let us first define a k × k matrix g, which will be useful in what follows, by
the consistent set of equations

∂g = −gFF , Dg = −
(
∂−1g(DFF )g−1

)
g, Dg = −

(
∂−1g(DFF )g−1

)
g. (2.24)

Hereafter, we also use the notation

f := ∂−1gFDIF,
Q := D − g−1f,
Q̂ F := D F + IFg−1f. (2.25)

Then, the relevant gauge transformation turns out to be

Ψ ⇒ Ψ̃ = GΨ, G =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

−f 0 0 g 0

−Df f 0 Dg g

 (2.26)

and the corresponding even and odd matrix Lax operators become

L̃ = GLG−1 = D + Λ, L̃ = GLG−1 = D + Λ̃ + Ã, L̃Ψ̃ = L̃Ψ̃ = 0,

Λ̃ =


0 0 0 0 0

λ 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 λ 0

 ,

Ã =


−g−1f 0 0 −g−1 0

Dg−1f −g−1f −F Dg−1 g−1

Q̂ F 0 0 IFg−1 0

gQg−1f 0 0 gQg−1 0

−DgQg−1f −gQg−1f −gQF −DgQg−1 gQg−1

 (2.27)

– 6 –
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and

L̃z = GLzG−1 = ∂ − λE + Ã, L̃zΨ̃ = 0,

Ã =


0 0 F 0 0

0 0 DF 0 0

−DQ̂ F Q̂IF 0 −DIFg−1 −Fg−1
0 0 gQF 0 0

0 0 DgQF 0 0

 ∈ Im(adE), (2.28)

respectively.

2.3 Flows

Now, following ref. [16] one can define flows of the hierarchy corresponding to the matrix

Lax operator (2.28)

DXpL̃z = [(XΘ̃p )+, L̃z], XΘ̃p = Θ̃λ
pXΘ̃−1, X ∈ Ker(adE), p ∈ N+ (2.29)

where DXp denote the corresponding evolution derivatives, Θ̃ is the dressing matrix defined

by

Θ̃−1
(
∂ − λE + Ã

)
Θ̃ = ∂ − λE, (2.30)

and the subscript + denotes the projection on the positive homogeneous grading (2.21).

The algebra of the flows (2.29) is isomorphic to the superalgebra

K̂er(adE) := Ker(adE)⊗ P (λ), (2.31)

where P (λ) is the set of polynomials in the spectral parameter λ. The isospectral flows ∂∂tp
(2.1) of the hierarchy, forming an abelian algebra (2.3), have to be generated by the central

element X = E of the kernel Ker(adE) via equations (2.29). All other flows from the

set (2.29) by construction commute with the isospectral flows and form their bosonic and

fermionic symmetries (for detail, see [16]). To close this subsection let us only mention that

the subalgebra sl(2k|2k)⊗ P (λ) ⊂ K̂er(adE) of the symmetry algebra (2.31) contains two
different odd symmetries which may be seen as extensions of the N = 2 supersymmetry

algebra. Two possible choices are obtained from the matrices

X
(1)
p± =


0 λp 0 0 0

±λp+1 0 0 0 0

0 0 0 0 0

0 0 0 0 λp

0 0 0 ±λp+1 0

 , X
(2)
p± =


0 0 0 λp 0

0 0 0 0 λp

0 0 0 0 0

±λp+1 0 0 0 0

0 ±λp+1 0 0 0

 . (2.32)

satisfying the anticommutation relations

{X(i)p±, X(i)k±} = ±2λp+k+1E, {X(i)p−, X(i)k+} = 0, i = 1, 2 (2.33)

The existence of a similar rich symmetry structure for the particular case of the reduced

N = 2 unconstrained (1|1, 0)–MGNLS hierarchy was observed recently in [8].

– 7 –
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2.4 Recursion operators

Using the general formula for recurrence relations

∂
∂tp
Ã =

(
∂ − adÃ ∂−1 adÃ

)
adE

∂
∂tp−1 Ã (2.34)

derived in [14, 16] for the case of Hermitian symmetric spaces (2.18), we obtain the following

recurrence relations for the hierarchy under consideration with the Lax operator L̃z (2.28):
∂
∂tp
F = ∂

∂tp−1F
′ + F∂−1 ∂

∂tp−1DD FF −Dg−1
(

∂
∂tp−1 g

)
QF +D

(
∂−1 ∂

∂tp−1FQ̂IF
)
F

−
(
∂−1 ∂

∂tp−1 (DF )Q̂IF
)
F −

(
∂−1 ∂

∂tp−1 (DF )Fg
−1
)
gQF,

∂
∂tp
(Fg−1) = − ∂

∂tp−1 (Fg
−1) ′ −

(
∂−1 ∂

∂tp−1DD FF
)
Fg−1 − (DQ̂ F )

(
∂

∂tp−1 g
−1
)

+ (Q̂IF )
(
∂−1 ∂

∂tp−1 (DF )Fg
−1
)
− (DIFg−1)

(
∂−1 ∂

∂tp−1 g(QF )Fg
−1
)

− Fg−1
(
∂−1 ∂

∂tp−1 (DgQF )Fg
−1
)

(2.35)

where ′ denotes the derivative with respect to the space variable z.
We have verified explicitly by direct calculations that the first few bosonic flows gen-

erated by eqs. (2.35) with the initial recursion step

∂
∂t1
F = F ′, ∂

∂t1
F = F ′ (2.36)

reproduce the corresponding isospectral flows ∂
∂tp
of the N = 2 supersymmetric uncon-

strained (k|n,m)–MGNLS hierarchy resulting from the pseudo–differential Lax–pair rep-
resentation (2.1).

2.5 Supersymmetry and locality

Although at the component level, the non-zero matrix entries in the connection Ã in
(2.28) are all independent, this is not so at the superfield level. The connection satisfies

constraints, which may be written as

[L̃, L̃z} = L̃L̃z − ̂̃LzL̃ = 0, [L̃, L̃z} = L̃L̃z − ̂̃LzL̃ = 0. (2.37)

If these constraints are respected by the flows, then the flows are consistent with super-

symmetry. In fact, only the first of these constraints is easily shown to be respected by the

isospectral flows. Using the dressing equation (2.30), we rewrite this constraint as

[
̂̃
Θ
−1
(D + Λ)Θ̃, ∂ − λE} = 0. (2.38)

Considering this equation at each homogeneous gradation, it is easy to show that it leads

to ̂̃
Θ
−1
(D + Λ)Θ̃ = D +Λ. (2.39)

It is then clear that the matrix EΘ̃p = Θ̃λ
pEΘ̃−1 commutes with the operator D+Λ. Since

this last operator respects the homogeneous gradation, we end up with the equation

[D + Λ, (EΘ̃p )+} = 0, (2.40)

– 8 –
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which shows that the isospectral flows respect the first of constraints (2.37). We conjecture

that the second of these constraints is also preserved, although we could not show it.

Let us discuss shortly the locality of the isospectral flows (2.29) with X = E. When

rewritten in terms of the local operator Lz in (2.10), they become

DEpLz = [(EΘp )+ −G−1DEpG,Lz], EΘp = Θλ
pEΘ−1, p ∈ N+, (2.41)

where the matrix Θ is obtained from dressing the operator Lz

Θ−1
(
∂ − λE +A

)
Θ = ∂ − λE. (2.42)

It is known that the matrix (EΘp )+ is a local functional in the fields and their derivatives.

Moreover, from the form of G in (2.26) one can show that the second term −G−1DEpG of
the Lax representation (2.41) does not contribute to the field equation of F , which is thus

local. This is not so, however, for F .

We conjecture that in order to demonstrate completely the supersymmetry and locality

of the isospectral flows, one should make use of the second representation introduced in

(2.13). This point is still under investigation.

3. Conclusion

In this paper we have constructed a sl(2k+ n|2k+m)–super–algebraic formulation (2.27–
2.28) of the N = 2 supersymmetric unconstrained (k|n,m)–MGNLS hierarchies in N = 2
superspace. Then we have derived the superalgebra s

(
gl(2k|2k) ⊕ gl(n|m)

)
⊗ P (λ) (2.31)

of their fermionic and bosonic symmetries (2.29). We have observed that this symmetry

superalgebra contains many odd flows, some of them generalizing the N = 2 supersymmetry

algebra. Finally we have constructed the recursion relations (2.35) for these hierarchies.

Let us finish this paper with a few questions for the future. It is easily seen that the

connection Ã entering into the Lax operator L̃z (2.28) is nonlocal. Moreover, its N = 2
superfield entries are not independent2 quantities, i.e. they are subjected to constraints.

Why in this case do isospectral matrix flows (2.29) be local, as it is obviously the case

in their original pseudo–differential representation (2.1)? Why are they supersymmetric,

or in other words, why do these flows preserve the above–mentioned constraints? Finally,

how can one see in general that these flows coincide with the original flows (2.1) we started

with. These questions are clarified only partly in the present paper, and we hope to discuss

them in more detail elsewhere.
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