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Abstract: String theory has long ago been initiated by the quest for a theoretical ex-

planation of the observed high-energy “Reggeization” of strong interaction amplitudes.

In terms of quantum field theory, it is the so-called “soft” regime, where the coupling

constant is expected to be large and thus perturbative calculations inadequate. How-

ever, since then, no convincing derivation of the link between gauge field theory at strong

coupling and string theory has come out. This 35-years-old puzzle is thus still unsolved.

We discuss how modern tools like the AdS/CFT correspondence give a new insight on

the problem by applying it to two-body elastic and inelastic scattering amplitudes. We

obtain a geometrical interpretation of Reggeization and its relation with confinement in

gauge theory.

1. Introduction

It is well-known that string theory started from the proposal of scattering amplitudes which

may grasp the two major structures of soft interaction phenomenology for 2→ 2 reactions
in a condensed form: resonances and Regge poles. Two types of amplitudes were proposed

for four-point amplitudes. The Veneziano amplitude corresponds to Reggeon exchanges

with non-vacuum quantum numbers, i.e. inelastic two-body reaction amplitudes, and

the Shapiro-Virasoro amplitude corresponds to Pomeron exchange with vacuum quantum

numbers, i.e. elastic amplitudes. These amplitudes have been conveniently represented by

“duality diagrams”, see Fig.1. In the representation of the Veneziano amplitude in terms

of quark lines, qq̄ intermediate states in the direct s-channel correspond to the resonances,

and qq̄ intermediate states in the exchanged s-channel to Regge poles, where s, t are the

well-known Mandelstam variables. The quark lines are to be considered as boundaries

of a surface bearing no quantum numbers, as can be seen for the representation of the

Shapiro-Virasoro amplitude corresponding to no quantum nmber exchange.
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Figure 1: “Duality diagrams” for two-body inelastic and elastic amplitudes.

Quite amazingly, this representation found its justification in terms of string theory.

The “duality diagram” representation of Fig. 1 can be mapped into the fusing and splitting

of strings. More precisely, the Veneziano and Shapiro-Virasoro amplitudes are topologi-

cally related to open and closed tree-level string respectively. This topological relation can

be more formally expressed in string theory by the invariance of amplitudes with respect

to deformations of the world sheet spanned by the interacting string, and by its conformal

invariant properties. After a generalization of dual amplitudes has been found for multipar-

ticle amplitudes, this raised the hope to find both a theoretically consistent theory of strong

interactions and a calculation procedure using the perturbative topological expansion of

string amplitudes [1].

However, despite many efforts during years, no widely recognized progress has been

done in the string theory of strong interaction amplitudes. Moreover, after the discovery

of QCD as the gauge field theory of quarks and gluons and its validity for a quantita-

tive description of many “hard” scattering processes, there remained little hope that a

string theory of strong interactions could take place. Indeed, even before the discovery of

QCD, major theoretical obstacles to the formulation of a consistent string theory of strong

intractions were being raised. Let us give a non exhaustive list of problems.

The conformal anomaly of string theories in Minkowski D-dimensional space leads to

the limitation D = 26, 10 for respectively bosonic and super strings in flat space. More

generally, the requirement of conformal and diffeomorphism invariance imposes stringent

constraints on the space in which the string moves.

Zero mass gauge and gravitational fields appear in the string spectra of asymptotic

states. Consistent string theory, when considered in flat target space, contains (in general)

gauge group and gravitational fields and degrees of freedom. They are thus more suit-

able for a stringy approach of grand unified theories, than for strong interactions and the

confinement problem, characterized by the absence of asymptotic zero mass states in the

theory.

To these difficulties, new ones have been added after the discovery of QCD. Let us list
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three among the main questions (at least those concerning the scattering of two particles):

• Can we find a consistent picture of the Reggeization of high-energy amplitudes when
QCD enters its strong coupling regime?. Even knowing the QCD lagrangian, it has

not been possible to derive from it high-energy amplitudes in the soft interaction

case. Lattice calculations have been useful for investigations at low energy but are

seemingly hopeless in the kinematical domain of high energies.

• Where are “hard” interactions recovered in a string theory framework? String world
sheets are suitable objects for the description of “soft” phenomena due to their ex-

tended structure in space and time. It is more intricate to show off in string theory

the “hard” structure visible in short-time interactions.

• Can we elaborate a suitable string theory which could coherently describe the properties
of gauge fields?. The degrees of freedom and the symmetries of a gauge field theory

are much different from those commonly found for string theories. the matching of

these two require non trivial constraints as recognized in particular in Ref.[2].

To the first of these three questions, the recently proposed duality corespondence

between certain string and certain gauge field theories gives new and reliable answers. It

seems that the second one can find some interesting clues also in the same framework

[3]. we will focus here upon the third one, namely the understanding of Regge two-body

amplitudes in gauge field theories at strong coupling in terms of the AdS/CFT duality.

This question has been the subject of an approach [4, 5, 6, 7] which I will now develop.

The plan of the present review is the following: in section 2, we will give a brief account

of the AdS/CFT dual correspondence, focusing on aspects relevant for our study. In section

3, we will explain the formalism using the classical approximation and minimal surfaces

for the determination of the AdS duals of two-body scattering amplitudes. We successively

apply it to quark (anti)quark, dipole-dipole elastic scattering and finally inelastic dipole-

dipole scattering. Next in 4, we will develop a semi-classical approximation, improving the

previous method by computing the fluctuation factor around the minimal surface solution.

A final section 5 is devoted to a summary and conclusion about the geometrical nature of

Reggeization in the confining AdS dual backgrounds.

2. String/Gauge fields Duality

The AdS/CFT correspondence [8] has many interesting formal and physical facets. Con-

cerning the aspects which are of interest for our problem, it allows one to find relations

between gauge field theories at strong coupling and string gravity at weak coupling in the

limit of large number of colours (Nc → ∞). It can be examined quite precisely in the
AdS5/CFT4 case which conformal field theory corresponds to SU(N) gauge theory with

N =4 supersymmetries.
Some existing extensions to other gauge theories with broken conformal symmetry and

less or no supersymmetries will be valuable for our approach, since they lead to confining
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Figure 2: AdS5/CFT4 duality correspondence.

gauge theories which are more similar to QCD1. Indeed, one important question is to ex-

amine to what extent confinement plays a rôle in the Reggeization of amplitudes. Our aim

is thus to investigate the possible realization and origin of Reggeization of two-body ampli-

tudes in such theories and what are the difference appearing with the original AdS5/CFT4
case.

Let us recall the canonical derivation leading to the AdS5 background [9], see Fig.2.

One starts from the (super)gravity classical solution of a system of N D3-branes in a 10−D
space of the (type IIB) superstrings. The metrics solution of the (super)Einstein equations

read

ds2 = f−1/2(−dt2+
∑
1−3
dx2i )+f

1/2(dr2+r2dΩ5) , (2.1)

where the first four coordinates are on the brane and r corresponds to the coordinate along

1Note that the appropriate string gravity dual of QCD has not yet been identified, and thus we are

forced to restrict for the moment our use of AdS/CFT correspondence to features which are expected to

be a general feature of confining theories duals, see a discussion further on in this section.
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the normal to the branes. In formula (2.1), one defines

f = 1 +
R4

r4
; R = 4πg2Y Mα

′2N , (2.2)

where g2YMN is the ‘t Hooft-Yang-Mills coupling and α
′ the string tension.

One considers the limiting behaviour considered by Maldacena, where one zooms on

the neighbourhood of the branes while in the same time going to the limit of weak string

slope α′. The near-by space-time is thus distorted due to the (super) gravitational field of
the branes. One goes to the limit where

R fixed ;
α′(→ 0)
r(→ 0) → z fixed . (2.3)

This, from the second equation of (2.2) obviously implies

α′ → 0 , g2YMN ∼
1

α′2
→∞ , (2.4)

i.e. both a weak coupling limit for the string theory and a strong coupling limit for the

dual gauge field theory. By reorganizing the two parts of the metrics one obtains

ds2 =
1

z2
(−dt2 +

∑
1−3
dx2i + dz

2) +R2dΩ5 , (2.5)

which corresponds to the AdS5 × S5 background structure, S5 being the 5-sphere. More
detailed analysis shows that the isometry group of the 5-sphere is the geometrical dual of

the N =4 supersymmetries. More intricate is the quantum number dual to Nc, the number
of colours, which is the invariant charge carried by the Ramond-Ramond form field.

In the case of confining backgrounds, an intrinsic scale breaks conformal invariance and

is brought in the dual theory through e.g. a geometrical constraint. For instance in [10]

a proposal was made that a confining gauge theory is dual to string theory in an AdSBH
black hole (BH) background

ds2BH =
16

9

1

f(z)

dz2

z2
+
ηµνdx

µdxν

z2
+ . . . (2.6)

where f(z) = z2/3(1 − (z/R0)4) and R0 is the position of the horizon. We will use this
background2 to study the interplay between the confining nature of gauge theory and its

reggeization properties. Actually the qualitative arguments and approximations should

be generic for most confining backgrounds, as already discussed in Ref. [12].For instance,

other geometries for (supersymmetric) confining theories [13, 14] have been discussed in

this respect. They have the property that for small z, i.e. close to the boundary, the

geometry looks like AdS5 × S5 (in [14] up to logarithmic corrections related to asymptotic
freedom) giving a coulombic qq̄ potential. For large z the geometry is effectively flat. In

all cases there is a scale, similar to R0 above, which marks a transition between the small

z and large z regimes.

2Although it was later found that the S1 KK states do not strictly decouple [11].
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In order to illustrate the way one formulates the AdS/CFT correspondence in a context

similar to QCD, let us consider the example of the vacuum expectation value (vev) of Wilson

lines in a configuration parallel to the time direction of the branes. This configuration allows

a determination of the potential between colour charges [15]. The rôle of colour charges in

the fundamental representation is played by open string states elongated between a stack

of Nc D3 branes on one side and one D3 brane near the boundary of AdS space (cf. [9]).

One writes

〈eiP
∫
C
~A·~dl〉=

∫
Σ
e−

Area(Σ)

α′ ≈ e−
Areamin
α′ × Fluct. , (2.7)

where C is the Wilson line contour near the D3 branes and Σ the surface in AdS-space with

C as the boundary, see Fig.3. The minimal area approximation is the vev evaluation in

the classical α′ → 0 limit. The factor denoted Fluct. refers to the fluctuation determinant
around the minimal surface, corresponding to the first one-loop (in σ-model sense) quantum

correction. It gives a calculable semi-classical correction.

In Fig.3, we have sketched the form of minimal surface solutions for the “confining”

AdSBH case, (see above (2.6)). For large separation of Wilson lines, the minimal surface

“feels” the horizon and is consequently curved. At smaller separation, the solution becomes

again similar to the conformal case, since the horizon cut-off does not play a big rôle.

The vev results in the classical approximation can be summed up as follows:

AdS5 : 〈Wilson Lines〉 = eTV (L) ∼ e#1T/L

AdSBH : 〈Wilson Lines〉 = eTV (L) ∼ e#2TL/R
2
0 ,

where, the potential behaviour is as expected for respectively conformal (perimeter law)

and confining (area law) cases. Note that there is an interesting information stored in the

coupling dependent numbers here denoted by #1,2 . Note also that, even in the case of a

confining geometry with an horizon at R0, Wilson lines separated by a distance L << R0
do not give rise to minimal surfaces sensitive to the horizon (see Fig.3), and thus give rise

to classical solutions similar to the non-confining case.

HORIZON

Boundary

Figure 3: Exemple of minimal surfaces with Wilson line boundaries.

– 6 –



 
h
e
p
2
0
0
1

26th Johns Hopkins Workshop Robi Peschanski

The important rôle of fluctuation corrections and the way of computing it in some

non-trivial cases will be discussed further on.

3. Supergravity Duals of Scattering Amplitudes

Using the AdS/CFT correspondence, we find that two-body high energy amplitudes in

gauge field theories can be related to specific configurations of minimal surfaces3.

Indeed, at high energy, fast moving colour sources propagate along linear trajecto-

ries in coordinate space thanks to the eikonale approximation. An analytic continuation

from Minkowski to Euclidean R4 space allows one to find a geometrical interpretation in
terms of a well-defined minimal surface problem. Let us consider for illustration different

applications.

3.1 Quark-quark elastic scattering

In a framework suitable for performing the AdS/CFT

L

θ

t

x

y

T

T

Figure 4: Wilson lines for quark-

quark elastic scattering in R4.

correspondence, quarks (resp. antiquarks) can be repre-

sented by colour sources in the fundamental (resp. anti

fundamental) reps. of SU(N). In the brane world, they are

obtained (e.g. see [9]) by considering systems of N+1 D3
branes of which one of the brane is removed to a distance

from the remaining stack of N D3 branes. This distance

is large (or equivalently z small) in order to satisfy a static

approximation for the quarks considered as ultra-massive.

In the corresponding gauge field theoretical frame-

work, it is knowen since a long time [19] that the high-

energy elastic quark-(anti)quark amplitude can be formu-

lated as follows

A(s, q2) = 2is

∫
d~l ei~q·~l 〈W1W2〉χ=log s/m

2

L=|~l|

= 2is

∫
d~l ei~q·~l−

1
α′Areamin(

~l) , (3.1)

where ~l is the impact parameter vector between the two

trajectories, conjugated to the momentum transfer ~q, and

χ = log s/m2 the total rapidity interval. Performing

an analytic continuation from Minkovskian to Euclidean

space [20]:

χ→ iθ ; tMink → −itEucl , (3.2)

the Wilson line vev can be expressed as a minimal surface problem whose boundaries are

two straight lines in a 3-dimensional coordinate space, placed at an impact parameter

distance L and rotated one with respect to the other by an angle θ, see Fig.4. In flat space,

with the same boundary conditions, the minimal surface is the helicoid. One thus realizes

that the problem can be formulated as a minimal surface problem whose mathematically
3A different approach has been independently proposed in Ref.[16].
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well-defined solution is a generalized helicoidal manifold embedded in curved background

spaces, such as Euclidean AdS Spaces. Unfortunately, this problem is rather difficult to

solve analytically, even in flat space. It is known as the Plateau problem, namely the

determination of minimal surfaces for given boundary conditions (see for instance [21]).

Thus, the interest of considering quark-quark scattering relies on the simple definition

of the minimal surface geometry in the conditions of a confined AdSBH metrics (2.6).

Indeed, in the configuration of Wilson lines of Fig.3 in the context of a confining theory,

the AdSBH metrics is characterized by a singularity at z = 0 which implies a rapid growth

in the z direction towards the D3 branes, then stopped near the horizon at z0. Thus, to

a good approximation, and for large enough impact parameter (compared to the horizon

distance), the main contribution to the minimal area is from the metrics in the bulk near z0
which is nearly flat. Hence, near z0, the relevant minimal area can be drawn on a classical

helicoid which can be parametrized:

t = τ cos θσ/L

y = τ sin θσ/L

x = σ

z ∼ z0 . (3.3)

However, the practical calculation [4] of the amplitude is complicated by the necessity

of introducing a cut-off in the T -direction (see Fig.4). This is physically expected since

the area spanned by the helicoid in the confining geometry goes to infinity, corresponding

to the spreading of the color field between the quarks, the confining forces increasing till

the string breaks for the production of particles, not described in the present scheme. It is

the expected counterpart, in QCD, of the infinite phase of electron-electron scattering in

QED. Let us sketch the calculations of [4].

The truncated helicoid solution is parametrized by (3.3)with τ = −T . . . T, σ = 0 . . . L
and θ is the total twisting angle. Its area is given by the formula

Area =

∫ L
0
dσ

∫ T
−T
dτ

√
1 +
τ2θ2

L2
= LT

√
1 +
T 2θ2

L2
+
L2

2θ
log



√
1 + T

2θ2

L2
+ θ TL√

1 + T
2θ2

L2
− θ TL


 . (3.4)

Through the analytical continuation (3.2), one would naively obtain a pure T -dependent

phase factor going to ∞ when removing the cut-off. However the analytic structure of the
euclidean area (3.4) involves cuts in the complex T , θ planes and thus leads to an ambiguity

coming from the branch cut of the logarithm. In fact when performing the analytical

continuation we have to specify the Riemann sheet of the logarithm (i.e. log → log+2πin).
This leads [4] to a T -independent real term which, inserted in formula (3.1), gives rise

to a reggeized amplitude. Doing this, the removal we make of the (infinite as T → ∞)
phase could be considered as a natural infrared regularisation. One finally obtains

AP(s, q2) = 2is
∫
d~l e

i~q·~l−
{
n

√
2g2
YM

N

χ
L2

2R2
0

}
∝ s

1−q2 R20

n
√
8g2
YM

N . (3.5)
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which represents a (n-dependent) set of Reggeized elastic amplitudes, with linear Regge

trajectories characterized by a Regge intercept 1 and Regge slopes given by
R20

n
√
8g2YMN

.

In this framework the removal of the (infinite as T → ∞) phase could be considered as
a natural infrared regularisation. We will see now how this assumption, related to the

consideration of unphysical asymptotic quark states, can be relaxed without affecting the

Reggeization property, when considering scattering between colorless dipoles.

It is interesting to note that the realization of Reggeization provided by the helicoid ge-

ometry through analytic continuation also gives a natural interpretation of the “signature”

factor, i.e. the phase factor distinguishing quark quark scattering and quark antiquark

scattering in Regge amplitudes. Indeed, quark quark scattering and quark antiquark scat-

tering are related through twisted helicoidal configurations in the bulk coordinate space.

For a given helicoid configuration representing quark quark scattering, twisting one of the

a quark lines will give rise to the helicoid representing quark antiquark scattering with the

same kinematics. Hence, through analytic continuation, one finds

θ → θ + π
2
⇒ s→ s e−iπ , (3.6)

which, once inserted in formula (3.5), gives rise precisely to the Regge phase signature

factor.

In the non-confining AdS5×S5 case, one would need to identify a generalized helicoidal
manifold embedded with the metrics (2.5), ı.e. the minimal surface with straight line

boundaries with an angle. This is a well-defined mathematical problem, which is yet not

solved. With some crude approximation however, looking for a variational solution with

z0 → z(σ, τ) in the parametrization (3.3), one can obtain [5] a solution at large log s :

A(s, q2) ∝
(
L

log s

)nF (π/2)
π

√
2g2
YM

N

2π

s
n 2π4

Γ(1/4)4

√
2g2
YM

N

2π , (3.7)

where F (Ω) is the “cusp anomalous dimension” calculated in [17] (F (π/2) ∼ 0.3π). It
is interesting to note that in this case, there is no Reggeization, at least with a non-zero

Regge slope. Formula 3.7 appears as an extension of the weak coupling result [18] including

a screening effect on the coupling (g2Y MN →
√
g2YMN) when it becomes strong, as for the

potential in the conformal case [15].

3.2 Dipole-dipole elastic scattering

Elastic scattering of colourless states is expected to be cured from the infra-red di-

vergent phase factor encountered in quark-(anti)quark scattering. In this respect, it is

interesting to consider the elastic interaction of two very massive QCD dipoles. Thanks

to their high mass (or equivalently small size a), one can neglect the fluctuations around

their classical trajectory and thus their propagation in coordinate space in the eikonale ap-

proximation can be represented by elongated Wilson loops near both right and left moving

light-cone directions. More precisely [4], one has to compute a Wilson loop correlator in
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the configuration displayed in Fig.5.

A(s, q2) = −2is
∫
d2x⊥eiqx⊥

〈
W1W2
〈W1〉 〈W2〉

− 1
〉

(3.8)

where the Wilson loops follow classical straight lines for quark(antiquark) trajectories:

W1 −→ xµ1 = p
µ
1τ (+a

µ) and W2 −→ xµ2 = x
µ
⊥ + p

µ
2τ (+a

µ) and close at infinite times. The

normalization 〈W1〉 〈W2〉 of the correlator ensures that the amplitude vanishes when the
Wilson loops get decorrelated at large distances.

Let us consider the solution in the confining back-

a
a

L

θ

t

x

y

Figure 5: Wilson contours for

Dipole-dipole elastic scattering.

ground (2.6), approximated by a flat metrics near the

horizon. For this setup we have to calculate the corre-

lation function of two Wilson loops elongated along the

“time” direction and have a large but arbitrary tempo-

ral length T (the exact analogue for Wilson loops of T

considered in the previous section). However, the cut-

off dependence on T is removed and thus the related IR

divergence which was present for the q(q̄) − q scattering
case. Indeed, for large positive and negative times the

minimal surface will be well approximated by two seper-

ate copies of the standard minimal surfaces for each loop

separately. When we come to the interaction region, and

for L sufficiently small, one can lower the area by forming

a “tube” joining the two worldsheets. Since we want to

calculate the normalized correlator 〈W1W2〉 / 〈W1〉 〈W2〉,
the contributions of the regions outside the tube will can-

cel out (in a first approximation neglecting deformations

near the tube). Therefore we have just to find the area of the tube, and subtract from it

the area of the two independent worldsheets. It is at this stage that we see that the result

does not depend on the maximal length of the Wilson loops T , and hence is IR finite. The

whole contribution to the amplitude will just come from the area of the tube.

Our calculation scheme proposed in [5] goes as follows. Since one does not know

the explicit minimal surface for these boundary conditions, let us perform a variational

approximation. Namely we consider a family of surfaces forming the tube, parameterized

by Ttube, which has the interpretation of an “effective” time of interaction. Then we make

a saddle point minimization of the area as a function of this parameter.

Suppose that the tube linking the two Wilson lines is formed in the region of the

time parameter t ∈ (−Ttube, Ttube). In our approximation its two “sides” are formed by
a duplication of the helicoid solution . The front and back will be each approximated by

strips of area aL

√
1 +

T 2tubeθ
2

L2
(we assume a,L ≥ R0).

The total area corresponding to the two Wilson loops is then given by

Area(Ttube) = 2L

∫ Ttube
−Ttube

dτ

√
1 +
τ2θ2

L2
+ 2aL

√
1 +
T 2tubeθ

2

L2
− 4a · Ttube , (3.9)
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where −2aTtube is the contribution of each individual Wilson loop to the normalization
1/ 〈W1〉 〈W2〉 of the Wilson loop correlation function.
Analytically continuing the area formula (3.9) to the Minkowskian case and using a

convenient change of variables, the Minkowskian area can be put in the following simple

form

Area(Ttube) =
2L2

χ

{
φ+
sin 2φ

2
+ ρχ cos φ− 2ρ sinφ

}
, (3.10)

where ρ ≡ a/L and sinφ = iχ Ttube/L is the new variational parameter.
In the strong coupling limit (α′ = 1/

√
2g2YMN → 0) the parameter φ is dynamically

determined from the saddle point equation:

0 =
∂Area(φ)

∂φ
= cosφ(cos φ− ρ)− ρχ

2
sinφ (3.11)

It is easy to realize that for large enough energy, the last term dominates and thus φ ∼ ±nπ.
Inserting this solution into the area (3.10) we find

Area(φ) = −2L
2

χ
nπ + 2aL(−1)n (3.12)

where we retain the physical solutions with n positive integer. We thus find a set of solutions

very similar to the inelastic factor obtained in the previous section. The modification due

to the front-back contribution 2aL is negligible in the Fourier transformed amplitude for

momentum transfer
√
q2 � a/R20. Also this term is probably more dependent on the

treatment of the front-back parts of the tube in our approximation.

z
max

L aa

(t ,x ,z)
1 1

2 2
(t ,x ,w)

SUGRA fields

Figure 6: Dipole-dipole scattering at large impact parameter.

Concerning the non-confining metrics AdS5 × S5, the minimal area solution with the
corresponding boundary conditions is difficult to find in analytic form, necessary for the

continuation to Minkowski space. However, there exists a generic and intringuing feature:

the existence of a geometrical transition between small and large impact parameter, cor-

responding to the realization of the minimal surface by two disconnected ones, see Fig.6,

where each of them reproduces the known solution used for the calculation of the interquark

potential [15].
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Taking advantage of this unique configuration, valid at large enough impact parameter

distance, it is possible [4] to compute the elastic amplitude via the supergravity approxi-

mation of the AdS string theory at small curvature. The amplitude is dominated by the

exchange contribution of all zero-mass excitations of the appropriate supergravity theory,

namely, Kaluza-Klein scalars, dilaton, antisymmetric tensor and graviton. All in all, the

graviton dominates at large energy as A(s, L) ∝ s×L−6 in the amplitude, but the region of
validity of the supergravity approximation requires a condition L� s2/7 or A(s, L)� s−5/7
which lies significantly below the absolute unitarity limit A(s, L) < O(1). As expected the
behaviour at large L is power-like and, for fixed s is found dominated by the KK scalar

tail in s L−2.

3.3 Dipole-dipole inelastic scattering

The application of AdS/CFT correspondence for the two previous exemples is not so easy,

even if partial results are encouraging. For “quark” elastic scattering, an infra-red time-

like cut-off is to be introduced due to the colour charges of the quarks which implies a

regularization scheme and a complication of the geometrical aspects. For dipole elastic

scattering, there is no need for a cut-off but the geometry of the minimal surface is com-

plicated. Inelastic scattering of dipoles allows one to circumvent both of these difficulties.

Indeed, the helicoidal geometry remains valid due to the eikonale approximation for the

“spectator quarks” while the “exchanged quarks” define a trajectory drawn on the helicoid,

see Fig.7. This trajectory plays the rôle of a dynamical time-like cut-off which takes part

in the minimization procedure.

1

1’ 2’
2

4

4’ 3’

3

x y

t

Figure 7: Wilson lines for inelastic dipole scattering.

Following the approach of [6] let us consider a meson-meson scattering process

(11′) + (22′) −→ (33′) + (44′), (3.13)

where the continuous lines 1-3, 2-4 correspond to spectator quark and antiquark, while

the dashed lines 1’-2’, 3’-4’ correspond to annihilated and produced quark-antiquark pairs.
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The labels correspond to the initial and final spacetime position 4-vectors that we fix for

our calculation.

The spacetime picture of this process is schematically illustrated in figure (7), where

the impact parameter axis x is perpendicular to the longitudinal t − y plane. Note that
the impact parameter is defined w.r.t. the spectator quark asymptotic trajectories.

The amplitude corresponding to the scattering process (3.13) can be schematically

written as 〈
<out|SF (3′, 4′|A)SF (1, 3|A)SF (4, 2|A)SF (2′, 1′|A)|in>

〉
A (3.14)

where <out| and |in> are wavefunctions for the outgoing and incoming mesons (up to
modifications due to LSZ reduction formulae). In formula (3.14), SF (X,Y |A) denotes the
full quark propagator between spacetime points X and Y in a given background gauge

field configuration A, while the correlation function 〈. . .〉A stands for averaging over these
configurations.

Let us first perform the calculations for the above scattering amplitude rotated into

Euclidean space. In impact parameter space we use the worldline expression for the (Eu-

clidean) fermion propagator in a background gauge field A = ACµ (Xµ) as a path integral
over classical trajectories [22]:

SF (X,Y |A) =
∫ ∞
0
dTe−mT

∫
DXµ(τ)δ(Ẋ2−1) I[Xµ(τ)]Pei

∫
Aµ(X(τ))·Ẋµdτ (3.15)

Here the path integral is over trajectories Xµ(τ) joining X and Y , parametrized by τ ∈
(0, T ). Because of the delta function, T is also the total length of the trajectory. The quark

mass dependence appears in the first exponential. The colour and gauge field dependence

is encoded in the (open) Wilson line along the trajectory Pei
∫
Aµ(X(τ)) Ẋµdτ , while the spin

1/2 character of the quark is responsible for the appearance of the spin factor:

I[Xµ(τ)] = P
∏ 1+Ẋµγµ

2
= lim
N→∞

1+Ẋµ(T )γµ
2

. . .
1+Ẋµ( 2N T )γµ

2

1+Ẋµ( 1N T )γµ

2
(3.16)

where the second equality gives a suitably regularized definition of the infinite product along

the trajectory Xµ(τ). Note that each of the N factors in this expression is a projector due

to the fact that Ẋ2 = 1. This spin factor was first formulated for D=3 and later for

arbitrary D [22]. In practice it was computed explicitly in D=2 and D=3, but not in

general for D > 3. We computed it [6] for the configuration of figure (7), i.e. in a D = 3

submanifold in D = 4 spacetime.

Let us comment two important steps [6] of the calculation of (3.14).

i) Since the initial and final mesons are colour singlets, the four Wilson lines close to

form a single Wilson loop, and the gauge averaging factorizes out of the expression:〈
tr Pei

∫
C
~A·d ~X

〉
A

(3.17)

where the contour C follows the quark trajectories 1 → 3′ → 4′ → 2′ → 1′ (following
the contours sketched on Fig.7). Hence, adopting the “world-line” path integral scheme of

Feynman [22], one may write the inelastic amplitude in terms of a Wilson loop vev:∫
Dτ

〈
W (1→3′→4′→2′→1′)

〉
A,τ e

−2mL(τ) , (3.18)
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where τ parametrizes the boundary trajectories and L is their total length. Using the AdS-
CFT correspondence in the same framework as previously, one may formally integrate over

the gauge degrees of freedom and write〈
tr Pei

∫
C
~A·d ~X

〉
A
≡
〈
W (1→3′→4′→2′→1′)

〉
A,τ=e

−Area(τ)
2πα′ × Fluct(τ). (3.19)

Note that the remaining minimization of (3.18) in τ runs now on both the area and its

boundary.

ii) The spin factor matrices multiply

I[1→3]α1α3 I[4→2]α4α2 I[2′→1′]α2′α1′ I[3
′→4′]α3′α4′ (3.20)

and are contracted with the initial and final spinor wavefunctions like uα1(p1)v̄α1′ (p1),

corresponding to a simple approximation for the wave-functions of the external mesons as

mentioned in the introduction. After non-trivial simplifications due to the 3-dimensional

dimension of the embedded trajectories, one finds

I[Ẋ] =
1+Ẋµ(T )γµ

2

1+Ẋµ(0)γµ

2
·
(
1+Ẋ(T ) · Ẋ(0)

2

)−1
⇒ 1
s
, (3.21)

once contracted with the initial and final spinors.

Let us focus on the configuration of Wilson lines of Fig.7 in the context of a confining

theory. As previously noted, the main contribution to the minimal area is from the metrics

in the bulk near z0 which is nearly flat. Hence, near z0, the relevant minimal area can be

drawn on a classical helicoid. However, by contrast with the previous cases, the natural

cut-off is provided by the exchanged quark trajectory, which is self-consistently fixed by the

minimization procedure. The solution of the amplitude boils down to an Euler-Lagrange

minimization over τ, namely

AR(s, L2) ∝
1

s
lim
α′→0

∫
Dτ e−

1
2πα′Area(τ)e−2mL(τ) × Fluct. , (3.22)

where Area(τ) is the section of an helicoid bounded by the quark trajectories having total

length L(τ).
It can be easily shown that the Euler-Lagrange equations admit a solution which

mimimizes both the area and the boundary length, namely

∂(− 1
2πα′Area−2mLength)

∂τ
= 0⇒

√
1 +

(
θτ

L

)2
= 0 . (3.23)

The solution is a constant (∂τ(σ)∂σ = 0) and complex trajectory

τ(σ)min ≡ T = ±iL/θ . (3.24)

Here the complex value has to be understood in the sense of applying the steepest descent

method to the path integral (3.15), and deforming the integration contours into the complex

plane.
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Substituting the classical solution pτ(σ) = −i into (3.15) gives a non vanishing contri-
bution from the logarithm:

e
− 1
2πα′

eff
Area(−iL/θ)

= e
− iL2

4α′
eff

θ −→ e
− L2

4α′
eff

χ
(3.25)

after analytical continuation to Minkowski space.

Performing the Fourier transform, the resulting amplitude reads:

AR(s, q2) =
∫
d~l ei~q·~l e

− L2

4α′
eff

χ ∝ s−α
′
effq

2

, (3.26)

corresponding to a linear Regge trajectory with intercept 0 and slope α′eff related to the
quark potential calculated within the same AdS/CFT framework.

4. Beyond the classical approximation: Fluctuations

Up to now, we restricted ourselves to a classical approximation based on the evaluation

of minimal surfaces solutions for the various Wilson loops involved in the preceeding cal-

culations. It is interesting to note [7] that a further step can be done by evaluating the

contribution of quadratic fluctuations of the string worldsheet around the minimal surfaces

in the case where these surfaces are embedded in helicoids, as discussed for the confining

backgrounds. The semi classical correction comes from the fluctuations near the mini-

mal surface sketched in Fig.8. The main outcome is that this semi classical correction

can be computed and is intimately related to the well-known “universal” Lüscher term

contribution to the interquark potential [23].

The fluctuation determinant for the case of a helicoid bounded by two helices with

τ = ±T has already been calculated [6, 7]. Let us briefly recall the basic steps. First one
reparametrizes the helicoid by replacing the variable τ in (3.3) by

ρ =
L

θ
log

(
θτ

L
+

√
1 +
θ2τ2

L2

)
. (4.1)

In the variables ρ, σ the induced metric on the helicoid has a conformal factor i.e.

gab = (cosh
2 θρ/L) δab . (4.2)

Figure 8: Fluctuations around the minimal helicoid.
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Therefore, since string theory in the AdS background is expected to be critical (conformal

invariant), we may perform the calculation getting rid of the conformal factor, i.e. for the

conformally equivalent flat metric gab = δab. This reduces to a calculation of the fluctuation

determinant for a rectangle of size a× b where

a = L ; b =
2L

θ
log
(
θT /L+

√
1 + θ2T 2/L2

)
. (4.3)

Furthermore, we assume that the quadratic bosonic fluctuations are governed by the

Polyakov action, as is indeed the case for string theories on AdS backgrounds. For high

energies (after continuation to Minkowski space at large a/b = O(log s)� 1) one obtains

Fluct.(τ(σ) ≡ T )→ exp
(n⊥ · π
24

· a
b

)
, (4.4)

where n⊥ is the number of zero modes in the transverse-to-the-branes directions. The
result is just equivalent to the Lüscher term in the potential (c.f. Ref.[23]) except that the

number of zero modes n⊥ = D− 2 can be larger than the usual value (2) corresponding to
flat 4D space.

Let us consider the resulting amplitudes after account taken of the fluctuation contri-

butions:

For elastic dipole-dipole scattering, see the discussion in subsection 3.2, one considers

[6, 7] the analytic continuation of the minimal area when θ → χ/π. Retaining here also the
dominant term in the b → 4iπL

χ for large χ ∼ log s, one obtains the fluctuation-corrected
“Pomeron” amplitude

AP(s, t) ∝ sαP (t) = s1+
n⊥
96
+
α′eff
4
t . (4.5)

For two-body inelastic scattering, see the discussion in subsection 3.3, one has to

implement the minimal condition (3.24) namely b ≡ iπL
χ . Hence, the fluctuation-corrected

“Reggeon” trajectory (cf. 3.26) reads4:

AR(s, t) ∝ sαR(t) = s
n⊥
24
+α′eff t . (4.6)

Let us comment these results. The first observation is that in both cases, the slope

is determined by minimal surface solutions through the logarithmic contribution in the

helicoid area. The factor four in the slope comes from the specific saddle point path

integral over the exchanged quark trajectories (for Reggeon exchange). It is interesting

to note that this theoretical feature is in qualitative agreement with the phenomenology

of soft scattering. Indeed once we fix the α′eff from the phenomenological value of the
static qq̄ potential (α′eff ∼ 0.9GeV −2) we get for the slopes αR = α′eff ∼ 0.9GeV −2 and
αP = α

′
eff/4 ∼ 0.23GeV −2 in good agreement with the phenomenological slopes.

The second feature is the relation between the Pomeron and Reggeon intercepts. At

the classical level of our approach these are respectively 1 and 0. Note that this classical

4Possible logarithmic prefactors, which are not under control at this stage of our approach, are not

determined.
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Figure 9: Comparison of AdS5 and AdSBH minimal contours at high energy.

piece is in agreement with what is obtained from simple exchanges of two gluons and quark-

antiquark pair, respectively, in the t channel. The fluctuation (quantum) contributions to

the Reggeon and Pomeron are also related by the factor four.

Adding both classical and fluctuation contributions gives an estimate which is in qual-

itative agreement with the observed intercepts. Indeed, when calculating the fluctuations

around a minimal surface near the horizon in the BH backgrounds there could be n⊥ = 7, 8
massless bosonic modes [12]. For n⊥ = 7, 8 one gets 1.073 − 1.083 for the Pomeron and
0.3− 0.33 for the Reggeon. This result is in agreement with the observed intercept for the
“Pomeron” and somewhat below the intercepts of around 0.5 observed for the dominant

Reggeon trajectories.

An interesting feature of the results is the key role of the logarithmic term in the

formulae (cf. (3.4) for the area of the truncated helicoids. Besides the main feature

being that it leads, through its analytical structure, to Reggeization, it also gives rise to

the possibility of additional contributions from crossing different Riemann sheets (log →
log+2πik) in the course of performing analytical continuation from Euclidean to Minkowski

space .

For instance in the “Reggeon” case, the amplitude in impact parameter space (3.26)

picks up new multiplicative factors:

e
− L2

4α′
eff

log s · e
−k L2

α′
eff

log s
. (4.7)

This can be interpreted (for k > 0) as k-Pomeron exchange corrections to a single Reggeon

exchange. Indeed the slope of the trajectory obtained from Fourier transform of formula

(4.7) is the one expected from such contributions5.

5. Conclusion: Reggeization and confinement

The interesting output of the application of AdS/CFT correspondence to high energy

amplitudes at strong coupling is to emphasize the relation between Reggeization and con-

finement, using the description of two-body scattering amplitudes in the dual string theory.

5However, the semi-classical correction to the intercepts seems to be more delicate, and needs further

study.
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Lattice calculations, which is the only presently known way to evaluate directly QCD ob-

servables at strong coupling, are not able to compute high-energy amplitudes.

When comparing AdS5 duality - which corresponds to a conformal, non-confining gauge

theory - with AdSBH duality, which leads to reggeization, the difference ultimately comes

from the different metrics in the bulk and thus from the different geometrical features of

the minimal surfaces for the same boudary conditions. In particular, taking into account

their different geometry, see e.g. Fig.9, one expects after analytic continuation and in the

large energy (χ→∞) limit:

AreaAdSmin ∼ limχ→∞
L

L/χ
; AreaBHmin ∼ limχ→∞L×

L

χ
. (5.1)

The AdS5 case leads to a L-invariant value, as it is scale invariant, and, after Fourier

transformation, to a high-energy amplitude with a q2 independent energy exponent (or

flat Regge trajectory), see formula (3.7). On the other hand, the AdSBH case leads to

a linear Regge trajectory after Fourier transformation. For the AdSBH case this rough

expectation can be verified by an explicit calculation. Hence confinement appears as an

essential ingredient for the reggeized structure of two-body high-energy amplitudes. We

expect this result not to be dependent on the precise geometrical AdSBH setting and thus

to indicate a quite general property of confining theories.

As a conclusion, let us summarize our results:

• The AdS/CFT correspondence can be used to give a geometrical formulation of two-
body scattering amplitudes in the gravitational dual of gauge field theories.

• The consideration of quark-quark scattering in physical Minkowski space shows that
the main geometrical features of two-body scattering amplitudes are related to a

(generalized to AdS metrics) helicoidal structure of minimal surfaces in Euclidian

space via analytical continuation.

• In the case of non conformal theories, such as the AdSBH case, the metrics is ap-
proximately flat near the horizon corresponding to the confinement scale. The (flat

space) helicoidal solutions lead to amplitudes with linear Regge slopes.

• While quark-quark scattering is entailed by a cut-off dependence, colourless dipole
scattering give rise to cut-off free amplitudes. In particular the two-body dipole-dipole

scattering with quark exchange leads to unambiguous results with well-defined regge

behaviour.

• Regge trajectories come out linear, with slopes and intercepts related to the quark
potential. They include a semi-classical correction due to the fluctuation around the

minmal surfaces which are similar to a Lüscher term, but in a 10-dimensional string

framework.

• The Pomeron (elastic case) intercept is 1 + ε where ε is related to a Lüsher term.
There exists a factor four between the Reggeon (inelastic case) and Pomeron Regge

slopes in agreement with “soft scattering” phenomenology.
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In conclusion, the AdS/CFT framework give new insights on the 35-years-old puzzle

of high-energy amplitudes at strong gauge coupling.

As a short outlook let us list some interesting problems for future work:

• High-energy phenomenology: Many aspects, like the Flavor/Spin dependences, re-
main to be studied.

• Approximations: The dual gauge theory is not specified, and the exact minimal
surface in the bulk metrics to be determined.

• Dual of QCD? In the present framework, the confining scale R0 has no relation with
ΛQCD.

• Unitarity: A more complete investigation requires the study of multi-leg amplitudes.

• Deeper general problems: The formulation of string theory in AdS backgrounds and
last but not least, a proof of the AdS/CFT conjecture.
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