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The anomaly-induced effective action and natural

inflation

A.M. Pelinson ∗, I.L. Shapiro† ‡, J. Solà §, , F.I. Takakura ¶

Abstract: The anomaly-induced inflation (modified Starobinsky model) is based on the

application of the effective quantum field theory approach to the Early Universe. We

present a brief general review of the model and show that it does not require a fine-tuning

for the parameters of the theory or initial data, gives a real chance to meet a graceful exit

to the FRW phase and also has positive features with respect to the metric perturbations.

1. Introduction

The possibility of observing phenomena occuring in the early universe, and in particu-

lar during inflation [1, 2] give a chance to learn new information about the high energy

physics. One of the options is to consider the model of inflation which contains smaller

phenomenological input compared to the conventional inflaton models (see, e.g. [3]) and

can be directly deduces from the results of quantum field theory (QFT) in curved space-

time. The remarkable example of such model is based on the vacuum quantum effects,

in the simplest case on the effects of massless fields. In this case the leading quantum

phenomenon is conformal anomaly. The original version of the anomaly-induced inflation

[4, 5, 6, 7] has been developed in 80-ties is the cosmological model which takes into account

the vacuum quantum effects of the free, massless and conformally coupled to metric matter

fields [8]. The quantum correction to the Einstein equation

Rµν −
1

2
Rgµν = 8πG < Tµν > −Λ (1.1)

(where we added the cosmological constant (CC) for the sake of generality) produces a

non-trivial effect because the anomalous trace of the stress tensor

T =< T µµ >= − (wC2 + bE + c∇2R) , (1.2)
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where

w =
1

(4π)2

(N0
120
+
N1/2

20
+
N1
10

)
,

b = − 1

(4π)2

(N0
360
+
11N1/2

360
+
31N1
180

)
,

c =
1

(4π)2

( N0
180
+
N1/2

30
− N1
10

)
. (1.3)

In the absence of matter, one can obtain the cosmological solution in two distinct ways:

using the (00)-component [4, 5] or via the anomaly-induced effective action [9, 10]. Indeed,

the last option is completely equivalent to taking the trace of (1.1). The resulting equation

has, for k = 0 FRW metric, the following form (since the cases k = ±1 are quite similar
[11] we will not consider them here):

....
a

a
+
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.
a
...
a

a2
+

..
a
2

a2
−
(
5 +
4b

c

) ..
a
.
a
2

a3
− M

2
P

8πc

(
..
a

a
+

.
a
2

a2
− 2Λ
3

)
= 0 , (1.4)

where MP = G
−1/2 is a Planck mass. The equation above has remarkable particular

solution

a(t) = a0 · exp(Ht) (1.5)

where (motivated by the recent supernova data [12]), we consider only positive CC in the

low-energy regime

H =
MP√
−32πb

(
1±

√
1 +
64πb

3

Λ

M2P

)1/2
. (1.6)

As far as Λ�M2P , we meet two very different solutions

Hc =

√
Λ

3
(1.7)

and HS =
MP√
−16πb

. (1.8)

The first solution (1.7) is exactly the one in the theory without quantum corrections, while

the second solution HS is the inflationary solution of Starobinsky. We suppose that the

first solution corresponds, approximately, to the present-day universe and the second one

to the beginning of the inflation. Hence, our purpose will be to find a natural interpolation

between them.

Let us consider the initial phase of inflation, where the CC plays no much role. The

equation for the (00) component, equivalent to the Eq. (1.4), has been completely studied

by Starobinsky [5]. The phase portrait of the theory may look quite different depending

on the sign of the coefficient c [11]. The inflationary solution with HS is stable for c > 0

and unstable for c < 0. The phase diagram for c > 0 is presented at the Fig. 1. It is

easy to see that there is only one (inflationary) attractor, therefore stable inflation does

not depend on the initial conditions (except the need to start from the homogeneous and

isotropic metric).
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In the unstable case the phase diagram can be
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Figure 1: The phase diagram for the sta-

ble version of the Starobinsky model.

found in [5]. There are several distinct attractors,

one of which corresponds to the FRW evolution [5]

and others to the unphysical, run-away type solu-

tions [13]. The original Starobinsky model deals

only with the unstable solution and implies that

the initial conditions must be chosen in a spe-

cial way: 1) very close to the exact exponential

solution (1.5), such that the inflation lasts long

enough. 2) this choice must provide that, after

the inflationary phase ends, the Universe will ap-

proach the attractor corresponding to the FRW

solution. All the matter content of the Universe

is created after the inflation ends through the de-

cay of the massive degree of freedom induced by

anomaly [5, 6]. Unfortunately, despite this model

is based on the QFT results and does not need

a special inflaton field, the amount of the fine-

tuning for the initial conditions is at least the

same as for the inflaton-based models.

In the recent works [14, 15, 11] we have developed an alternative version of the Starobin-

sky model, which does not require a fine-tuning for the initial data, for it interpolates,

naturally, between stable and unstable regimes. In the rest of this article, we shall present

a brief exposition of our model.

2. Inflation and SUSY, simple tests

First of all, we rewrite the condition of stability c > 0 in terms of the field content of

the underlying QFT. We assume that the theory includes N0 scalars, N 1
2
fermions and

N1 vectors. The numbers N0, N 1
2
, N1 reflect a particle content of the theory, and have

nothing to do with the real matter which might fill the Universe. Using a standard result

(1.2), we obtain [13]

c > 0 ⇐⇒ N1 <
1

3
N1/2 +

1

18
N0 . (2.1)

The last inequality does not hold for the Standard Model, where N1, 1
2
, 0 = (12, 24, 4).

However, it is satisfied for its minimal supersymmetric extension (MSSM) with N1, 1
2
, 0 =

(12, 32, 104). The same is true for any realistic supersymmetric model, because the super-

symmetrization procedure implies introducing fermion and scalar superpartners (sparticles)

while the fundamental interactions (corresponding to the content of vector fields) are kept

the same. We can see that the transition between stable and unstable inflation can be

associated with the SUSY breaking. Usually, the SUSY breaking implies the special form

of the mass spectrum, when all sparticles are very heavy compared to observable particles
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(soft breaking). Therefore it is clear that inflation becomes unstable when its energy scale

becomes less than the masses of the most of the sparticles and these sparticles decouple.

All the time we will be concerned by the Feynman diagrams including the loops of

the matter fields with external gravitational tails. For this reason, the typical energy for

us is the energy of gravitons. In the cosmological setting, we shall associate it with the

magnitude of the Hubble parameter H. Let us introduce the notation M∗ for the energy
scale where the inequality (2.1) changes its sign to the opposite. The anomaly-induced

inflation model assumes that the value of H is decreasing with time Ḣ < 0 and that HS
is just an initial value of H. The stable inflation becomes unstable at the instant tf which

is defined as a solution of the equation H(tf ) =M∗.
It is worth mentioning two relevant results of QFT in curved space-time. 1) The

decoupling of the loops of massive fields in curved space-time really takes place [16, 17]. In

particular, one can observe the smooth and monotone evolution of the coefficient c with

scale and also the change of its sign from positive to negative due to the decoupling of the

sparticles [17]. 2) The coefficient c in Eq. (1.2) contains an arbitrariness related, primarily,

with the possibility to add
∫ √−gR2-term to the classical action of vacuum. However, this

arbitrariness does not contradict our version of the anomaly-induced inflation (see [18] for

the details) because it can be always fixed by the renormalization condition. It is important

that the ambiguity does not impose new constraints on the model and does not require a

fine-tuning in the mentioned renormalization condition.

Before we proceed with inflation, let us perform two simple tests of the model.

First test. Consider the late FRW Universe with k = Λ = 0: The typical value of the

Hubble parameter is H0 ∼ 10−42GeV . Then, all massive particles decouple and the unique
contribution to the anomaly comes from photon N1, 1

2
, 0 = (1, 0, 0). It is easy to see that

c < 0 and the “fast” inflation is unstable. Consider a(t) ∼ t2/3 in the equation (1.4)
without CC and inserting the dust-like source ρm/(a

3 c) in the r.h.s

....
a

a
+
3
.
a
...
a

a2
+

..
a
2

a2
−
(
5 +
4b

c

) ..
a
.
a
2

a3
− 2k

(
1 +
2b

c

) ..
a

a3
=
M2P
8πc

(
..
a

a
+

.
a
2

a2

)
− ρm
ca3
. (2.2)

For the large values of time the “classical” (Einstein and the dust sourse) terms in the

r.h.s behave like 1/t2, while the fourth-derivative quantum corrections in the l.h.s behave

as 1/t4. Then, the quantum corrections are becoming irrelevant at t→∞.
Second test. Consider the same physical situation as above but this time without matter

and with a small positive CC. In this case, according to (1.8), H = Hc =
√
Λ/3. We will

now check whether this solution is stable with respect to perturbations of H. Consider

H → Hc + const× eλt. The characteristic equation for λ has the form

λ3 + 7Hcλ
2 +

[
(3c− b)4Hc2

c
− M

2
P

8πc

]
λ− 32πbHc

3 +M2PHc
2πc

= 0 .

It is remarkable that all the solutions for the positive CC have negative real part

λ1 = −4Hc , λ2/3 = −
3

2
Hc ±

MP√
8π|c|

i ,
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while for the zero CC these solutions have zero real part and one would need to study the

nonlinear approximation. Thus, Λ > 0 stabilizes our universe with respect to the dangerous

quantum corrections.

3. Vacuum effects of massive fields

At that point we can conclude that our choice of the overall
∫ √−gR2-term does not lead to

problems in the IR regime and can safely proceed in the study of the UV energies, where we

expect to meet natural inflation due to the quantum effects of matter fields. The inflation

starts in the stable phase because the particle content (N0,N1/2,N1) is supersymmetric, and

then becomes unstable due to the SUSY breaking and the decoupling of the sparticles. The

above story looks very appealing because it does not involve any sort of fine-tuning, links

inflation with SUSY and also links the SUSY breaking with the graceful exit. However, until

now there was an obvious loophole in this story. We are considering the inflation derived

from anomaly-induced action, that is the action that results from the quantum effects of

massless conformal fields. At the same time, in order to use the notion of decoupling one

has to evaluate the effects of massive fields. Furthermore we expect that, for some reason,

the value of the Hubble parameter H will decrease during inflation. But this would never

happen if we have only massless fields, for in this case the inflation is exponential and

H = HS is a constant. Hence, our main hope is that taking masses of the fields into

account we will really see the inflation slowing down.

In general, the problem of deriving the effective action of vacuum for the massive fields

is not solved yet. The existing regular methods, like covariant Schwinger-DeWitt method,

correspond to the expansion in the series in curvatures and their derivatives, divided by the

corresponding powers of the particle masses. Therefore, these methods are efficient only

for the limit of large masses or, contrary to that, in the massless limit where the effective

action can be obtained through integrating the conformal anomaly. In our case, the effective

action of vacuum should be calculated in the small-mass limit where the mentioned regular

methods are not applicable. That is why the calculations Anzats for this case has been

developed in [15] and generalized in [11]. Let us discuss it here in some details.

The idea is very simple: we formulate massive fields as massless and conformal, by

introducing a new scalar field χ and a new massive parameter M . The conformization of

the Einstein-Hilbert action has been known for a time [19] and for the massive matter fields

it was known at the level of a dilatation symmetry within the cosmon model [20]. The

conformal symmetry involving χ is reflected by the new Noether identity. This identity is

anomalous, and integrating anomaly one arrives at the effective action. After that the new

degree of freedom χ is frozen and we arrive at the effective action of massive fields.

The first step is to introduce the conformal representation of the massive fields. This

can be achieved by replacing

ms,f →
ms,f
M
χ ,

1

16πG
R → M2P

16πM2
[
Rχ2 + 6 (∂χ)2

]
, Λ→ Λ

M2
χ2 , (3.1)

where ms,f are scalar and fermion masses.
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The divergences of the theory in the conformal representation have the form

Γ
(1)
div =

µn−4

4− n

∫
dnx

√
|g|
{
wC2 + bE + c∇2R+ f̃M

2
P

4πM2
[Rχ2 + 6(∂χ)2] +

g̃M4Pχ
4

4πM4

}
, (3.2)

where

f̃ =
1

3π

∑
f

Nfm
2
f

M2P
, and g̃ =

1

4π

∑
s

Nsm
4
s

M2PΛ
− 1
π

∑
f

Nfm
4
f

M2PΛ
. (3.3)

Here the sums are taken over all species of fermions and scalars with masses mf , ms and

multiplicities Nf , Ns.

The classical Noether identity for the vacuum part of the effective action has the form

T = − 2√−g gµν
δSvac
δgµν

+
1√−g χ

δSvac
δχ

= 0 . (3.4)

The identity above differs from the usual conformal Noether identity < T µµ >= 0 due to

the presence of χ. Correspondingly, the conformal anomaly means < T > 6= 0 instead of
usual < T µµ > 6= 0. Simple calculations give [15, 11]

< T >= −
{
wC2 + bE + c∇2R + f̃ M

2
P

4πM2
[Rχ2 + 6(∂χ)2] +

g̃ M4P
4πM4

χ4
}
. (3.5)

After deriving the anomaly-induced effective action and fixing the conformal unitary gauge

χ = χ̄ e−σ =M , the one-loop effective action becomes

Γ̄(1) =

∫
d4x
√
|ḡ|{wC̄2σ + b(Ē − 2

3
∇̄2R̄)σ + 2bσ∆̄σ} − 3c+ 2b

36

∫
d4x
√
−gR2

−
∫
d4x
√
|ḡ|
{ e2σ
16πG

[R̄ + 6(∇̄σ)2][1− f̃σ]− Λ e
4σ

8πG
[1− g̃σ]

}
+ Sc[gµν ,M ] , (3.6)

where σ = ln a and Sc[gµν ,M ] is the unknown functional which is a constant of integration

for the anomaly-induced effective action. In the case of massive field this functional is not

conformal invariant (it would be if we do not replace χ → M), and therefore the formula
above is just an approximation. The comparison with the renormalization group corrected

classical action of vacuum shows that (3.6) is direct generalization of it, with the usual

scaling parameter t (see, e.g. [10]) substituted by the local quantity σ. Therefore, (3.6)

must be a reliable approximation for the small-mass limit, exactly in the region where the

Schwinger-DeWitt expansion is not efficient.

According to the Eq. (3.6), the leading effect of the particle masses is that 1/G and

the CC are replaced by the variable expressions

M2P → M2P (1− f̃ ln a) , (3.7)

ΛM2P → ΛM2P (1− g̃ ln a) . (3.8)

The last formulas show that, in principle, the effect of masses is slowly accumulating when

the inflation goes on. The reason is that, the dependence is logarithmic and moreover the

quantities (3.3) are very small for any GUT, and incredibly small for, e.g. MSSM.

– 6 –



International Workshop on Astroparticle and High Energy Physics I.L. Shapiro

The equation for the conformal factor following from the action (3.6) has the form

of (1.4) with the replacement (3.7), plus some non-essential terms [11] with an additional

factor of f̃ . Therefore, we can expect that the procedure (3.7) should also provide an

approximate solution on the basis of the exact stable inflationary solution (1.8). There is,

however, a strong constraint related to the value of g̃. At the beginning of inflation we

assume a small Λ�M2P , that is why the solution (1.8) does not depend on CC. But, when
the inflation evolves, the Hubble parameter (1.8) will decrease according to (3.7) and the

absolute value of the CC will increase very fast according to (3.8). Then, instead of the

graceful exit to the approximate FRW with the small value of the CC, the universe will

end up with the new phase of inflation, driven by the ΛM2P g̃σ term. Indeed, the region

when this terms becomes large, is close to the limit of validity of the approximation behind

(3.6), but in order to perform the preliminary analysis it is better to impose a constraint

on the particle spectrum of the SUSY model and request that the β-function for the CC

equals zero. Then, g̃ = 0 too, and the analysis gets simplified.

The relation (3.7) can be easily rewritten as a differential equation for the conformal

factor H = σ̇ = HS · (1− f̃σ), and the last can be solved immediately to give the following
approximate analytical solution

σ(t) = H0 t −
H20
4
f̃ t2 . (3.9)

It is interesting that the numerical analysis confirms the parabolic dependence (3.9) with

enormous precision [11].

The relation (3.9) can be used to evaluate the total number of the inflationary e-

folds for different models of the SUSY breaking. The first option is MSSM with the value

M∗ ∝ 1TeV . It is easy to see that in this case f̃ ∝ (M∗/MP )2 = 10−32 and therefore the
total amount of the e-folds is 1032. The expected temperature of the Universe after the

end of inflation can be evaluated from Einstein equation in a usual way T ∝
√
M∗MP =

1011GeV , which is a standard estimate for the inflaton-based models. Alternatively, one

may consider the SUSY breaking at the GUT scale. Suppose M∗ ∝ 1014GeV . Then
the total amount of e-folds is about 1010 and the expected temperature after the end of

inflation is high T ∝ 1016GeV . In this case the inflation does not solve the monopole
problem of GUT’s. Hence, the anomaly-induced inflation really favors low-energy SUSY.

Indeed, the intermediate versions (like, e.g. the Pati-Salam model) with the SUSY breaking

at 1010GeV are also possible. In this case we obtain T ∝ 1014GeV which is better with
respect to the monopole problem.

4. Problems of stability

The stability of the inflationary solution from the initial stage until the graceful exit rep-

resents one more consistency test of the model. At the beginning the role of the masses

of the quantum fields is negligible and the criterion of stability is given by (2.1). Consider

the later phase of inflation, when the quantum effects of massive fields temper exponential

behavior. In this case we can use the approximate analytic method and also numerical
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simulations. The results of both methods are the same [11]. Let us briefly describe the an-

alytic method. The stability or instability with respect to the small perturbations depends

on the behavior of σ(t) at the relatively small intervals of time, where the Hubble param-

eter H can be treated as a constant. Of course, when we move from one such interval to

another, H changes providing a source for the perturbations. The direct calculations give

the following equation for the perturbations σ → σ + y(τ), where we used “renormalized”
time variable τ = t/H, H = const:

....
y + 7

...
y + 2

(
6− b
c

) ..
y − 8b

c

.
y − 4b

c
f̃ y = 0 (4.1)

At this point we assumed, as before, a relatively small value of the cosmological constant.

The last equation has a very special form, because all the coefficients are constants and all

but the last have the magnitude of the order one. The last coefficient is extremely small

because of the factor f̃ � 10−9. The stability of equation with constant coefficients may
be explored, e.g. using the Routh-Hurwitz (RH) conditions. A priory the RH determinants

may have an arbitrary sign, but in our case they all turn out to be positive, such that the

stability of the solution for tempered inflation (with respect to the perturbations of the

variable σ) holds until the universe enters the marginal region H ≈M∗.
The numerical analysis shows that,

41000 41100 41200 41300
0

0.01

0.02

0.03

0.04

Figure 2: Oscillations of H(t) at the last stage of

the stable inflation. Illustrative plot for f̃ = 10−5.

at the final stage of the stable anomaly-

induced inflation, when the value of Hub-

ble parameter is approaching M∗, this
parameter starts to oscillate (see Fig. 2).

Indeed, these oscillations are due to the

perturbations introduced by the change

of one “constant” value of H to another.

The last testing of the model which

has been performed so far is the stabil-

ity with respect to tensor perturbations

of the metric. In the covariant formal-

ism (see, e.g., [21]) the evolution of the

tensor degree of freedom is described by

the coordinate-dependent scalar factor h(t, ~r) of the tensor mode. The dynamical equation

for h(t) is very complicated [22, 13], even for the theory of massless fields. Moreover, this

equation contains an ambiguity due to the conformal functional Sc[gµν ] [9, 13]. One can

partially fix this ambiguity by choosing the proper vacuum for the perturbations [13]. As

a result we meet an almost flat spectrum of the perturbations, however their amplitude

may increase very fast. At the same time the amplification of the amplitudes is perform-

ing much slower than the expansion of the conformal factor. As a result the total metric

becomes more and more homogeneous and isotropic. This is a situation at the initial stage

of inflation.

At the last stage, e.g. in the last 65 e-folds, the equation for h(t) is greatly simplified

due to the enormous number of the total e-folds between the beginning and the end of
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inflation. The typical value for σ depends on the model but, as we discussed above, it

varies between 1010 and 1032. In the last 65 inflationary e-folds the σ itself may be treated

as a big number. This feature greatly simplifies the equation for h ≡ h(t, ~x), which can be
presented as follows

b0
....

h +b1
...

h +b2
..

h +b3
.

h +b4h+

+n1e
−2σ∇2

.

h +n2e
−2σ∇2

..

h +n3e
−4σ∇4h = 0 , (4.2)

where

b0 = b0(t) = a1 + w · σ(t) , b1 = 6H b0 + 2wH ,

b2 = 11H
2 b0 +H

2(c− b/2 + 7w) ,
b3 = 6H

3 b0 +H
3(3c− 3b/2 + 5w) , b4 = −12H4b , (4.3)

n1 = −2H b0 , n2 = −2 b0 , n3 = b0 . (4.4)

It is worth noticing that in the general case, without the approximation of constant H and

without treating σ as a big number, the equation for h is much more complicated [22, 13,

23]. But in the physical situation of interest the equation can be simplified even further.

The terms with space derivatives ∇h(t, ~r) are suppressed by the factors of exp(−2σ) and
therefore are negligible. Furthermore, we can divide the equation by σ and see that all

the coefficients become constants with accuracy of 1/σ. In particular, in the last terms

we can safely replace 1/σ by 1/σf = f̃ . This value σf = f̃
−1 corresponds to the point

of transition from stable to unstable inflation. The most important difference is that, in

the limit of large σ we do not meet an arbitrariness related to the conformal functional

Sc[gµν ] and to the choice of the classical action of vacuum. In fact, the equation for h(t, ~r)

is completely defined by the universal β-functions w, b, c for the vacuum parameters. In

particular, the difference between the equations of [22] and [13] (it is due to the distinct

choices of Sc[gµν ]) disappears in this approximation.

The remaining equation for h(t) has the form

....

h +6
...

h +11
..

h +6
.

h −
12b

wσf
h = 0 . (4.5)

It is remarkable that the general structure of the Eq. (4.5) is quite similar to the

one of the Eq. (4.1) for the perturbations of σ(t). But it is even more remarkable that

the solution of (4.5) does not have growing modes. One of the roots of the characteristic

equation has the magnitude of the order of f̃ and others of the order of one, but all of

them have negative real parts. For the physically reasonable choice of the initial data the

amplitude of the perturbations almost remains constant. The significant amplification of

the tensor perturbations takes place only for the waves with the energies close to the Planck

one, where all our semiclassical approach is not consistent.

We conclude that the stability of the inflationary solution with respect to the pertur-

bations of the conformal factor and the tensor mode of the metric holds from the initial
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stage (when the quantum fields may be approximately considered massless) until the scale

M∗, when most of the sparticles decouple and the inflation becomes unstable1. Indeed,
the stability of the model may be jeopardized in the transition period, where we expect to

meet rapid oscillations of the conformal factor which should lead to reheating. The main

line in the further development of the model must be related with the quantitative model

description of the decoupling and the transition period.

5. Concluding remarks

We have briefly described the model of inflation based on the effective action of vacuum.

This effective action follows from the quantum corrections of the massive fields. Indeed,

our approach to the effective action of the massive fields is based on the special Anzats

[15, 11] which is reliable at the beginning of inflation, when masses are small compared to

H. Due to the unbroken supersymmetry, at this scale the coefficient g̃ = 0 and the CC term

is irrelevant. In this case the formula (3.9) describes the evolution of the Universe, and the

Hubble parameter is decreasing linearly with time. If we continue this evolution until the

point H =M∗, the sparticles should decouple and the universe starts a new unstable phase
of the evolution. We assume that this stage ends in the FRW phase or in the present-day

state with the small positive CC (1.8). However, it is easy to see an inconsistency in the

consideration presented above. In fact, our Anzats becomes not reliable when the value of

the Hubble parameter H is approaching H =M∗, because this is the scale comparable to
the masses of many sparticles. Similarly, at this scale the standard curvature expansions

(e.g. Schwinger-DeWitt) are also not applicable, because the masses of the particles and

the Hubble parameter H are of the same order of magnitude in this region. All in all,

what we have at the moment is the description of the asymptotic regimes. It is not clear,

however, how to achieve the qualitative description of the region H ∝M∗, which is indeed
the most interesting phenomenologically. If we get such a description, this can open the

way to the investigation of the reheating and density perturbations (which were actually

considered in [24] for the original Starobinsky model).

Finally, despite the anomaly-induced inflation is not as developed as inflaton models,

it represents an attractive alternative to them. In particular, even at the present state of

knowledge we have some obvious advantages, such as the possibility to avoid a standard

fine-tuning in the choice of initial data, a good chance to achieve a natural graceful exit and

also to control the amplitude of the gravitational perturbations. Only further theoretical

and phenomenological study of this model and comparison with experimental/observational

data may eventually confirm or rule out this model of inflation.
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