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Abstract: We derive a total set of MHD equations in SM describing evolution of a

dense plasma with neutrinos. First this is done for a hot pair plasma consisting from

electrons and positrons, neutrinos and antineutrinos of all flavors in an isotropic medium

like the early unverse plasma at the lepton stage. Then we find how axial vector currents

violating parity in SM contribute to MHD for a slightly polarized (anisotropic) plasma

where a new mechanism for the amplification of mean magnetic fields arises du e to the

collective neutrino-plasma interactions instead of assumed asymmetry of fluid velocity

vortices leading to the same effect of α2-dynamo.

Dedicated to my granddaughter Kat

1. Introduction

It is well-known that the magnetohydrodynamic (MHD) or macroscopic description of a

plasma is less detailed and much simpler than the kinetic one which corresponds to the

microscopic description of the plasma evolution and therefore it is a more complicated

approach.

The MHD equation system allows, in particular, to derive the Faradey (induction)

equation for magnetic fields in the standard model of electroweak interactions (SM) in-

cluding weak interaction terms. The main goal of this work is the detailed derivation of

Faradey equation in SM that is important for the generation of primordial magnetic fields

in cosmology and magnetic fields in a supernova protostar where powerful neutrino fluxes

interact with the dense plasma.

We derive the full set of MHD equations using the standard method of moments [1] for

Relativistic Kinetic Equations (RKE) written in the collisionless (Vlasov) approximation.

There are other ways to derive MHD, e.g. using the Lagrangian formalism for relativistic

multicomponent fluid [2] while we prefer the method of the quantum RKE for lepton plasma
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in SM [3, 4] that is more approppriate to describe both classical and spin properties of

polarized plasmas permiated by an external magnetic field.

Note that neutrino RKE is a useful tool to describe many phenomena in astrophysics

and cosmology. In particular, neutrinos play the most important role for a supernova (SN)

burst or in the lepton asymmetry formation before the primordial nucleosynthesis in the

early universe. The usual motivation to use the RKE approach for neutrino propagation in a

dense matter is stipulated by the account of neutrino collisions: within a SN neutrinosphere

or in the hot lepton plasma of the early universe before neutrino decoupling.

However, in addition to collision integrals there are self-consistent weak interaction

terms in the neutrino RKE [3] that are linear over the Fermi constant ∼ GF (see below
section II) and analogous to the Lorentz force terms for charge particles in the standard

Boltzman RKE which in turn are linear over the electric charge ∼ q (q = − | e | for
electrons).

In the standard kinetics these self-consistent electromagnetic fields are well-known to

play a very crucial role. In collisionless, or Vlasov approximation, such kinetic equations

describe, e.g. thermonuclear plasmas in laboratory and stars for which an energy exchange

between electromagnetic waves (eigen modes) and charged particles proceeds faster than

via the direct particle collisions with all following issues in collisionless plasma: instabilities,

heating, etc.

One expects that the self-consistent weak interaction (∼ GF ) could lead for neutrinos
to some analogous collective interaction effects, e.g. to neutrino driven streaming instability

of plasma waves in an isotropic plasma [5] or instability of spin waves in a polarized medium

[4], and to the generation of magnetic fields in hot plasma of early universe [2, 6].

2. Lepton MHD in Standard Model (SM) of electroweak interactions

In this Section we derive MHD equations using the method [1] of moments of kinetic

equations , or integrating RKE’s over momenta,
∫
d3p(...),

∫
d3pp × (...), ∫ d3pεp × (...).

We start from the simple case of unpolarized (isotropic) plasma and in the next subsection

we derive MHD using RKE’s in a magnetized plasma [4].

2.1 Lepton MHD in unpolarized medium

In an isotropic unpolarized plasma the collisionless RKE for electrons and positrons (e =

± | e | with upper sign for positron) derived in SM including weak forces takes the form [5]

∂f (±)(p,x, t)
∂t

+ v
∂f (±)(p,x, t)

∂x
± | e | (E(x, t) + [v ×B(x, t)]) ∂f

(±)(p,x, t)
∂p

±

∓GF
√
2
∑
a

c
(a)
V

[
−∇[nνa(x, t) − nν̄a(x, t)]−

∂jνa(x, t)− jν̄a(x, t)
∂t

+

+v ×∇× (jνa(x, t) − jν̄a(x, t))
]∂f (±)(p,x, t)

∂p
= 0 , (2.1)
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where j
(νa,ν̄a)
µ (x, t) = (nνa,ν̄a(x, t), jνa,ν̄a(x, t)) =

∫
d3k(kµ/Ek)f

(ν,ν̄)(k,x, t)/(2π)3 is the

neutrino (antineutrino) four-current density; c
(a)
V = 2ξ ± 0.5 is the vector coupling for

a = e, µ, τ neutrinos with the upper sign for the electron ones a = e.

We complete the system by the neutrino (antineutrino) collisionless RKE’s:

∂f (νa)(k,x, t)

∂t
+ n
∂f (νa)(k,x, t)

∂x
+GF

√
2c
(a)
V

[
−∇

(
n(e)(x, t) − n(ē)(x, t)

)
−

−∂[j
(e)(x, t)− j(ē)(x, t)]

∂t
+ n×∇×

(
j(e)(x, t) − j(ē)(x, t)

)] ∂f (νa)(k,x, t)
∂k

= 0 ,

∂f (ν̄a)(k,x, t)

∂t
+ n
∂f (ν̄a)(k,x, t)

∂x
−GF

√
2c
(a)
V

[
−∇

(
n(e)(x, t) − n(ē)(x, t)

)
−

−∂[j
(e)(x, t)− j(ē)(x, t)]

∂t
+ n×∇×

(
j(e)(x, t) − j(ē)(x, t)

)] ∂f (ν̄a)(k,x, t)
∂k

= 0 ,

(2.2)

where j
(e,ē)
µ (x, t) = (ne,ē(x, t), je,ē(x, t)) =

∫
d3p(pµ/Ep)f

(e,ē)(p,x, t)/(2π)3 is the electron

(positron) four-current density.

In 5-moment approximation of ideal hydrodynamics we neglect collisions and hence

omit viscosity, heat flux terms while retaining self-consistent electroweak interactions be-

tween leptons. Thus we have to derive the particle density conservation (continuity) equa-

tion, the motion (Euler) equation (momentum conservation) and energy conservation equa-

tion.

Continuity equations

The weak interaction forces above have the Lorentz structure or enter RKE’s as the

electromagnetic Lorentz force in the third term of Eq. (2.1), Fweakjµ (x, t)×(pµ/εp)∂f (a)(p,x, t)/∂pj .
Hence they do not contribute to the continuity equations [5] which take the standard form

∂j
(a)
µ /∂xµ = 0 after integration of RKE’s (2.1) and (2.2) over momenta d

3p, d3k corre-

spondingly, resulting in

∂n±(x, t)
∂t

+
∂[n±(x, t))V±(x, t)]

∂x
= 0 , (2.3)

for charged leptons and

∂nνa,ν̄a(x, t)

∂t
+
∂[nνa,ν̄a(x, t))V

(νa ,ν̄a)(x, t))

∂x
= 0 , (2.4)

for neutrinos (antineutrinos). Here n± = n′±γ±, nνa,ν̄a = n′νa,ν̄aγνa,ν̄a are the lepton den-
sities in the laboratory reference frame. The four-currents j

(a)
µ = n′aU

(a)
µ are given by the

Lorentz-invariant densities n′a = j
(a)
µ U (a)µ where U (a)µ = (γa, γaV

(a)) is the unit four-

velocity of the plasma a-component, U
(a)
µ U

(a)µ = 1, γa = (1− V 2a )−1/2, a = ±, νa, ν̄a.
Considering the particular case of the hot pair plasma T− = T+ = T � µ where the fast

e±γ interaction provides equilibrium leading to the zero chemical potentials µ− = −µ+ =
µ = 0 and introducing the small perturbations for comoving components V± = V+ δV±,
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δV± � V that means γ− ≈ γ+ = γ we get the single continuity equation for the total
charged lepton density n′ = n′− + n′+ instead of the two ones in Eq. (2.3),

∂γn′(x, t)
∂t

+
∂[γn′(x, t))V(x, t)]

∂x
= 0 . (2.5)

Such hydrodynamical approximation means strong correlation in a dense plasma between

opposite charges due to which the continuous lepton medium becomes electroneutral con-

ducting liquid (electrons and positrons move with the same velocities as a whole) resulting

in electric field vanishes while magnetic field exists (lepton MHD, see below Eq. (2.9)).

Neglecting protons the electroneutrality condition means that the background densities

n′±0 entering the total ones n′± = n′±0 + δn′± obey the equality

n′−0 = n
′
+0 = n0e ,

where in the hot plasma n0e = 0.183T
3.

Note that the fluid (mean) velocity V differs from the microscopic n that enters the

RKE of massless particles (2.2), | n |= 1. Of course, the Lorentz transformation with
the unit vector U

(νa)
µ = (γνa , γνaVνa) does not change the value of the microscopic four-

momentum kµ = (Ek,k), E
2
k − k2 = 0.

Motion equations

Multiplying the RKE (2.1) by the momentum p and integrating it over d3p with the

use of the standard definitions of the fluid velocity

V±(x, t) = n−1±
∫
d3pvf (±)(p,x, t)/(2π)3 , the positron ( electron) density

n± =
∫
d3pf (±)(p,x, t)/(2π)3 , and the generalized momentum of the lepton fluid P± =

w±γ±V± = n−1±
∫
d3ppf (±)(p,x, t)/(2π)3 , one obtains the Euler equation that coincides

with Eq. (4.6) derived in [2] using another (relativistic Lagrangian) approach for multi-

component fluid,

(∂t +V± · ∇)P± = −∇p
′±
n±
± | e | (E+ [V± ×B]) +

∓GF
√
2
∑
νa

caV

[
−∇δnνa(x, t)−

∂δjνa(x, t)

∂t
+V± ×∇× δjνa(x, t)

]
, (2.6)

where δnνa = nνa − nν̄a, δjνa = jνa − jν̄a are the neutrino density and neutrino 3-current
density asymmetries respectively; w± = e±+p′±/n′± is the Lorentz-scalar enthalpy per one
particle; e±, p′± = n′±T± are the internal energy and the pressure correspondingly, T± is
the Lorentz-invariant temperature. In particular, for the Jüttner equilibrium distribution

f
eq
± (p) = exp[(µ± − pµUµ)/T±], where µ± is the Lorentz-invariant chemical potential, the
thermodynamical characteristics are also Lorentz-invariant,

w± = me
K3(me/T±)
K2(me/T±)

, e± = w± − T±, p′± = 4πm2eT 2±K2(me/T±) exp(µ±/T±) . (2.7)

For equilibrium pair plasma T+ = T− = T all these characteristics coincide, w+ = w− = we,
p′+ = p′− = pe, etc.
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Summing Euler equations for electrons and positrons (2.6) one obtains the motion

equation (electric field and neutrino density terms do not contribute)

d(P+ +P−)
dt

= −∇(p
′
+ + p

′−)
γn0e

+ | e | (V+ −V−)×B−

−GF
√
2
∑
νa

c
(a)
V [V+ −V−)×∇× δjνa(x, t)] , (2.8)

where d/dt = ∂/∂t +V · ∇.
Then we use in (2.8) the Maxwell equation without displacement current (∂E/∂t is

omitted in MHD ), δj
(em)
e =| e | n0eγ(V+ − V−) = 2 | e | neδV = rot B/4π where

ne = γn0e is the plasma density in the laboratory reference frame. We put also the total

pressure p = p′+ + p′− = 2pe, the total enthalpy w = w+ + w− = 2we introducing the total
generalized momentum P = P+ +P− = wγV.
Thus, we obtain finally the MHD motion equation for pairs generalized in SM with

neutrinos,

dP

dt
= −∇p

ne
+
rotB×B
4πne

− GF
√
2

| e | 4πne
∑
νa

c
(a)
V [rotB×∇× δjνa(x, t)] , (2.9)

The motion equations for neutrinos and antineutrinos are derived multiplying the RKE

(2.2) by the momentum k and integrating over d3k,

dKνa
dt
= −∇p

′
νa

nνa
+ fνa ,

dKν̄a
dt
= −∇p

′̄
νa

nν̄a
+ fν̄a , (2.10)

where the generalized momenta

Kνa,ν̄a = γνa,ν̄awνa,ν̄aVνa,ν̄a = n
−1
νa,ν̄a

∫
d3kkf (νa,ν̄a)(k,x, t)/(2π)3 ,

are given by the Lorentz-invariant thermodynamical functions wνa,ν̄a = eνa,ν̄a+p
′
νa,ν̄a/n

′
νa,ν̄a;

the weak forces fν given by,

fνa = +GF
√
2c
(a)
V

[
−∇δn(e)(x, t)− ∂δj

(e)(x, t)

∂t
+Vνa ×∇× δj(e)(x, t)

]
,

fν̄a = −GF
√
2c
(a)
V

[
−∇δn(e)(x, t)− ∂δj

(e)(x, t)

∂t
+Vν̄a ×∇× δj(e)(x, t)

]
,

(2.11)

have opposite signs and, in general, depend on different fluid velocities, Vνa 6= Vν̄a. Here
we input charged lepton density and 3-current density asymmetries, δn(e) = n− − n+,
δj(e) = j(e) − j(ē) which are small in hot plasma.
Since there are different fluid velocities as well as possible different thermodynamical

functions, wνa = eνa + Tνa = 4Tνa 6= wν̄a = 4Tν̄a with the equation of state for massless
neutrinos, pν = eν/3 (see (2.7) for massless particles mν = 0), we consider different motion
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equations for neutrinos and antineutrinos (2.10). Note that the inequality for electron

neutrino species, Tνe 6= Tν̄e can arise due to beta-processes and the CC-current interaction
and leads to a temperature difference for electron and muon (tau) neutrino components.

For the latter (νµ, ν̄µ ) one expects same temperatures, however, we do not use this property

to simplify the system (2.10).

Energy equations

Multiplying the RKE (2.1) by the energy Ep and integrating over d
3p one obtains the

energy conservation law (upper sign for positrons)

∂[γ2±n′±e± + γ2±V2±p′±]
∂t

+
∂[γ2±n′±w±V±]

∂x
=

= ±γ±n′±V± ·
(
| e | E− fweake

)
, (2.12)

where the inner energy e±, the enthalpy w±, the pressure p± are given by Eq. (2.7); the
weak force in the r.h.s. acting on charged leptons is given by

fweake = GF
√
2
∑
νa

caV

[
−∇δnνa(x, t)−

∂δjνa(x, t)

∂t

]
. (2.13)

Adding energy equations (2.12) and using the relation E = −V ×B that is valid for
an ideal conducting medium one gets the MHD energy equation for pairs generalized here

in SM including weak forces,

∂[γ2n′ee + γ2V2p]
∂t

+
∂[γ2n′weV]
∂x

= −
(rot B) ·

(
| e | [V ×B] + fweake

)
4π | e | , (2.14)

where the force fweake is given by (2.13), n′ = n′+ + n′−, V− = V+ ≈ V, γ+ = γ− ≈ γ and
meaning the equilibrium reached through the fast eγ-interaction, T+ = T− = T we put
ee = e+ = e−, we = w+ = w−, p = p′+ + p′− in the agreement with (2.7).
Analogously multiplying the neutrino (antineutrino) RKE (2.2) by the energy Ek and

integrating over d3k one obtains the energy equation (upper sign for neutrinos)

∂[γ2νa,ν̄an
′
νa,ν̄aeνa,ν̄a + γ

2
νa,ν̄aV

2
νa,ν̄ap

′
νa,ν̄a]

∂t
+
∂[γ2νa,ν̄an

′
νa,ν̄awνa,ν̄aVνa,ν̄a ]

∂x
=

= ±γνa,ν̄an′νa,ν̄a(Vνa,ν̄a · fνa,ν̄a) , (2.15)

where the weak force acting on neutrinos from the pair plasma fνa,ν̄a is given by Eq. (2.11).

The set of MHD equations: the continuity ones (2.4), (2.5), the motion ones (2.9),

(2.10) and the energy ones, (2.14), (2.15) is completed by the Faradey equation for the

magnetic field B generalized in SM due to weak interactions (see next section, Eq. (3.2)).

2.2 Lepton MHD in polarized medium

Analogously with the case of unpolarized medium we can derive MHD equations in the

presence of a strong large-scale uniform magnetic field B0 which polarizes plasma popu-

lating partially the main Landau (non-degenerate) levels for free electrons and positrons.
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Other levels being populated by leptons with opposite spin projections are degenerate (the

factor Lande ge = 2 doubles such states) and do not contribute to the medium polarization.

The lepton density at the main Landau level in anisotropic medium is given by

n
(±)
0 =

∫
d3p

(2π)3
S
(±)
0 (εp) =

| e | B0
2π2

∫ ∞
0
dpf

(±)
0 (εp) , (2.16)

where in the hot plasma T � µ one obtains n(±)0 '| e | B0T ln 2/2π2.
Now using the electron RKE Eq. (30) from [4] we can generalize the Euler equation

for electrons and positrons (2.6) for the case of a polarized medium,

(∂t +V± · ∇)P± = −∇p
′±
n±
± | e | (E+ [V± ×B]) +

∓GF
√
2
∑
νa

caV

[
−∇δnνa(x, t) −

∂δjνa(x, t)

∂t
+V± ×∇× δjνa(x, t)

]
∓

∓GF
√
2

ne

∑
νa

c
(a)
A

[
n
(±)
0 b̂

(0)div δjνa(x, t) −N(±)0 ∇(b̂(0) · δjνa(x, t))
]
, (2.17)

where in a non-relativistic (NR) plasma, the relativistic polarization density terms

N
(±)
0 =

n±0
3
+
| e | B0me
18π2

∫ ∞
0
f±0 (εp)dp

∂v(3 − v2)
∂p

coincide with the main Landau level contributions, N
(±)
0 → n(±)0 , given by Eq. (2.16);

B = B0 +B
′ is the total magnetic field.

Adding equations (2.17) we obtain finally the pair motion equation in polarized medium:

dP

dt
= −∇p

ne
+
rotB×B
4πne

− GF
√
2

| e | 4πne
∑
νa

c
(a)
V [rotB×∇× δjνa(x, t)] +

+
GF
√
2

ne

∑
a

c
(a)
A

[
(n
(−)
0 − n(+)0 )b̂(0)div δjνa(x, t)−

−(N (−)0 −N (+)0 )∇(b̂(0) · δjνa(x, t))
]
.

(2.18)

Note that the polarization asymmetries n
(−)
0 − n(+)0 , N (−)0 −N (+)0 are small in the hot

relativistic plasma of early universe while in a degenerate electron gas of a magnetized

supernova, T � µ, these asymmetries can be large since n(−)0 =| e | B0µ/2π2 � n(+)0 = (|
e | B0T/2π2)e−µ/T .
Assuming B′ � B0 we can include the perturbative field B′(x, t) into the polarization

terms in the last lines of Eq. (2.18) with the change B0 → B, b̂(0) → b̂.
In general, one can consider the limit of strong magnetic fields (or diluted media) for

which the main Landau level is populated only. E.g. a degenerate electron gas obeying

the condition eB ≥ µ2/2 would be fully polarized, or ne ≈ n(−)0 [7], that could lead to

comparable contributions of pseudovector and vector terms in the pair motion equation

(2.18).
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The neutrino (antineutrino) motion equations take the form which is similar to Eq.

(2.10) while in a polarized medium the vector force for neutrinos fνa (2.11) (and similarly

fν̄a for antineutrinos) is added with the additional axial vector force, fνa → fνa + f (A)νa ,
dKνa
dt
= −∇p

′
νa

nνa
+ fνa + f

(A)
νa ,

dKν̄a
dt
= −∇p

′̄
νa

nν̄a
+ fν̄a + f

(A)
ν̄a . (2.19)

The latter term ( f
(A)
νa and similarly f

(A)
ν̄a with the change of common sign and fluid velocity

Vνa → Vν̄a),

f (A)νa =
GF c

(a)
A√
2

[
−∇δA0(x, t)− ∂δA(x, t)

∂t
+Vνa ×∇× δA(x, t)

]
, (2.20)

depends on the spin density asymmetry δAµ(x, t),

δAµ(x, t) = A
(−)
µ (x, t) −A(+)µ (x, t) ,

A(±)µ (x, t) = me
∫
d3p

(2π)3
1

εp

(
pS(±)(p,x, t)

me
;S(±)(p,x, t) +

p(p · S(±)(p,x, t))
me(εp +me)

)
,

(2.21)

that is given by the charged lepton spin distributions S(±)(p,x, t) obeying the spin RKE
like Eq. (12) in [4]. In NR plasma such electron spin distribution defines the well-known

hydrodynamical characteristic - magnetization m(x, t) =| µB |
∫
(d3p/(2π)3S(−)(p,x, t) ≈|

µB | A(x, t) which obeys the Bloch evolution equation and completes the system of MHD
equations for fermions in a polarized medium [4].

We note here that the neutrino (antineutrino) currents jνa,ν̄a(x, t) entering through

weak forces the pair motion equation (2.18) are connected with the neutrino generalized

momenta Kνa,ν̄a(x, t) via

jνa,ν̄a(x, t) =
n′νa,ν̄a
wνa,ν̄a

Kνa,ν̄a(x, t). (2.22)

Note also that continuity equations (2.3), (2.4) are fulfilled in polarized medium [4]. We do

not consider here energy equations that are easily derived from RKE’s in polarized medium

analogously to Eqs. (2.12-2.15).

3. Faradey equation in SM

In order to derive Faradey equation let us multiply the electron (positron) hydrodynamical

motion equation (2.17) by − | e | (and +| e |) correspondingly and then sum them to
obtain the auxiliary result for the electric field in a polarized plasma:

E = −1
2

∑
σ=±
Vσ ×B+

∑
σ=±

eσ
2e2
(∂tPσ + νemδPσ + (Vσ∇)Pσ ∓ (Vσ)n∇(Pσ)n) +

– 8 –
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+
GF
√
2

| e |
∑
νa

c
(a)
V

[
−∇δnνa − ∂tδjνa +

1

2

∑
σ=±
Vσ ×∇× δjνa

]
−

− GF√
2 | e | ne

∑
νa

c
(a)
A

[
(n
(−)
0 + n

(+)
0 )b̂

∂δnνa(x, t)

∂t
+

+(N
(−)
0 +N

(+)
0 )∇(b̂ · δjνa(x, t))

]
. (3.1)

Let us stress that instead of the difference of electron and positron contributions in

axial vector terms entering the pair motion equation (2.18) and given by the polarized

density asymmetries ∼ (n(−)0 − n(+)0 ) we obtained here the sum of them ∼ (n(−)0 + n
(+)
0 )

that can lead to an essential effect in hot plasma (see below section V).

Using for the last term at the first line of Eq. (3.1) the identity (Vσ)n∇(Pσ)n −
(Vσ∇)Pσ = Vσ × ∇ × Pσ and the thermodynamics relation for the work dRσ/dt =
VσdPσ/dt = −pσdvσ/dt, (Vσ)n∇(Pσ)n = ∇(εσ − TσSσ) + Sσ∇Tσ, where εσ , Sσ are the
internal energy and entropy per one particle (of the kind σ = ±), pσ, vσ, Tσ are the
pressure, the volume and the temperature correspondingly; then substituting Eq. (3.1)

into the Maxwell equation ∂tB = −∇× E we obtain the Faradey equation generalized in
SM with neutrinos and antineutrinos:

∂tB = ∇×V×B−∇× η∇×B+
∑
σ

( eσ
2e2

)
∇Tσ ×∇Sσ −

−
∑
σ

( eσ
2e2

)
∇× (∂tPσ −Vσ ×∇×Pσ)−

−GF
√
2

| e |
∑
νa

c
(a)
V ∇× (∂tδjνa −V ×∇× δjνa) +

+
GF
√
2

2 | e |
∑
νa

c
(a)
A

[
∇×

(
n
(−)
0 + n

(+)
0

ne

)(
b̂
∂δnνa
∂t

)
+

+∇×
(
N
(−)
0 +N

(+)
0

ne

)
∇(b̂ · δjνa)

]
.

(3.2)

Here the equalities δV+ + δV− = 0, or V+ + V− = 2V, V+ − V− = 2δV+ ≡ 2δV
followed from the eγ-equilibrium are taken into account; the magnetic diffusion coeffi-

cient η = (4πσcond)
−1 stems from the third term in the electric field (3.1) given by the

electromagnetic collision frequency νem, which enters the plasma conductivity σcond =

ω2p(εe/we)/4πνem with εe, ωp =
√
4παne/εe being the internal energy and the plasma fre-

quency correspondingly. In the non-relativistic plasma the enthalpy we coincides with the

internal energy, we ≈ εe ≈ me, while in the hot relativistic plasma we = 4T , εe = 3T . For
the uniform conductivity the second term takes the standard form +η∇2B.
The first term in the r.h.s. (3.2) represents the nonlinear dynamo effect, the third one

is the Biermann battery effect. The fourth term can be neglected for small fluctuations

δP� P, δV � V.
In an unpolarized medium we can omit all terms in last lines which are proportional to

the axial vector coupling c
(a)
A . The remaining standard terms and weak interaction vector
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terms (∼ c(a)V ) reproduce the Faradey equation (5.7) in [2] for the ideal pair plasma (η = 0)
interacting with neutrinos (antineutrinos).

The neutrino (antineutrino) currents jνa,ν̄a entering (3.2) are given in Eq. (2.22) by

their generalized momenta Kνa,ν̄a which in turn obey the motion equations (2.10), (2.19).

In the next section we consider an application 1 of the generalized Faradey equation

(3.2) which includes weak interaction terms violating parity to the actual problem of mag-

netic field generation in the early universe plasma.

4. Large-scale magnetic field generation in early universe

The main problem of primordial magnetic field generation that leads to a seed of observable

galactic magnetic fields is an inconsistency of their values B and correlation lengths L0
obtained in the different scenarios.

There are many ways how to generate small-scale random magnetic fields with large

values of Brms =
√
< B2 >, e.g. using some causal mechanisms like bubble collisions at

phase transitions, while the correlation length of such magnetic fields evolved (via inverse

cascade) during expansion of universe into large-scale magnetic fields turns out to be too

small at present time, L0 ∼ tens parsecs, to reach the size L0 ∼ 100 kps for galactic
magnetic field, or even more (� Mps) for extragalactic magnetic fields. The other way
using inflation scenario allows, vice versa, to get large-scale (a few Mps) magnetic fields

while their strength occurs too small for observable magnetic fields.

Let us simplify the Faradey equation (3.2) rewriting it as a simple governing equation

for mean magnetic field evolution

∂B

∂t
= ∇× αB+ η∇2B , (4.1)

where we omitted: dynamo term neglecting any macroscopic rotation in plasma of early

universe, Biermann battery effect and weak interaction terms given by the vector coupling

c
(a)
V .

Here we approximate the tensor αij coming in E from the axial vector force in (2.17)

by the first diagonal (∼ αδij) term:

α =
GF

2
√
2 | e | B

∑
a

c(A)eνa

[(
n
(−)
0 + n

(+)
0

ne

)
∂δnνa
∂t

]
'

' ln 2

4
√
2π2

(
10−5T

m2pλ
(ν)
fluid

)(
δnν
nν

)
, (4.2)

where densities n
(±)
0 are given by Eq. (2.16), nν/ne = 0.5, and we assume a scale of

neutrino fluid inhomogeneity t ∼ λ(ν)fluid, that is small comparing with a large Λ-scale of the
mean magnetic field B, λ

(ν)
fluid � Λ.

The diffusion coefficient η ≈ 4π/137 T is given by the relativistic plasma conductivity.
1Results in section below were obtained together with D.D. Sokoloff in [6].
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For a small neutrino chemical potential µν , ξνa(T ) = µνa(T )/T � 1, the neutrino
asymmetry in the r.h.s. of Eq. (4.2) is the algebraic sum following the sign of the axial

coupling, c
(A)
eνa = ±0.5,

δnν
nν
≡
∑
a

c(A)eνa
δnνa
nνa

=
2π2

9ζ(3)
[ξνµ(T ) + ξντ (T )− ξνe(T )] . (4.3)

We stress that the Eq. (4.1) is the usual equation for mean magnetic field evolution

(see e.g. [8]) with α-effect based on particle effects rather on the averaging of turbulent

pulsations. It is well-known (see e.g. [9]) that Eq. (4.1) describes a self-excitation of a

magnetic field with the spatial scale Λ ≈ η/α and the growth rate α2/4η.
Substituting α into Λ = η/α we arrive now to the estimate

Λ

lH
= 1.6× 109

(
T

MeV

)−5λ(ν)fluid
lν(T )


 (| ξνe(T ) |)−1 , (4.4)

where the neutrino mean free path lν(T ) = Γ
−1
W is given by the weak rate ΓW = 5.54 ×

10−22(T/MeV)5 MeV, lH(T ) = (2H)−1 and H=4.46× 10−22(T/MeV)2 MeV is the Hubble
parameter.

If the neutrino fluid inhomogeneity scale λ
(ν)
fluid is of the order lν(T0) ∼ 4 cm� lH(T0) ∼

106 cm, we have Λ/lH ≥ 1 at the beginning of the lepton era (T = T0 ∼ 102 MeV). The
magnetic field time evolution is given by

B(t) = BEW exp

(∫ t
tEW

α2(t′)
4η(t′)

dt′
)
, (4.5)

where BEW is some seed value at the electroweak instant TEW (here we imbed the standard

estimates of α2-dynamo into the context of expanding Universe).

For λ
(ν)
fluid(T ) ∼ lν(T ) we can estimate the index in the exponent (4.5) substituting in

the integrand the expansion time

t(T ) = 3.84× 1021(T/MeV)−2MeV−1/√g∗ with the effective number of degrees of freedom
g∗ ∼ 100 at the temperatures T > 1 GeV. Then from our estimates of α(T ) and η(T ) with
the change of the variable (T/105MeV) → x one finds the fast growth of the mean field
(4.5) in hot plasma, x ≤ 1,

B(x) = BEW exp

(
3.2× 108

∫ 1
x

(
ξνe(x

′)
0.07

)2
x ′10dx ′

)
(4.6)

given by the upper limit xEW = 1. The behaviour of ξνe(T ) at high temperatures is

unknown as well as a value of the neutrino density asymmetry. We can state only that this

value changes due to neutrino oscillations somewhere below T < 10 MeV not overcoming

the primordial nucleosynthesis limit | ξνe |< 0.07 at the BBN time (T ∼ 0.1 MeV, x =
10−6) [10]. Nevertheless, even for ξνe(x) ∼ 10−4 there remains an enhancement of a weak
large-scale magnetic field BEW � T 2EW/ | e | by collective neutrino-plasma interactions
considered here, or this mechanism can be efficient and important in cosmology. For a
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decrease of the neutrino fluid inhomogeneity scale λ
(ν)
fluid � lν entering the α-parameter

this conclusion remains valid even for very small neutrino chemical potentials, | ξνa |� 1.
Note that the inflation mechanism (with a charged scalar field fluctuations at super-

horizon scales) explains the origin of mean field at cosmological scales. However, the

value of this field is too small for seeding the galactic magnetic fields. The amplification

mechanism suggested in our paper [6] can improve this very low estimate by a substantial

factor from Eq. (4.6).

Thus, while in the temperature region TEW � T � T0 = 102 MeV there are many
small randommagnetic field domains, a weak mean magnetic field turns out to be developed

into the uniform global magnetic field. The global magnetic field can be weak enough

to preserve the observed isotropy of cosmological model [11] while strong enough to be

interesting as a seed for galactic magnetic fields. This scenario was intensively discussed

by experts in galactic magnetism [12], however until now no viable origin for the global

magnetic field has been suggested. We believe that the α2-dynamo based on the α-effect

induced by particle physics [6] solves this fundamental problem and opens a new and

important option in galactic magnetism.
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