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Abstract:We have shown that the electron anti-neutrino appearance in the framework

of the spin flavor conversion mechanism is much more efficient in the case of neutrino

propagation through random than regular magnetic field. This result leads to much

stronger limits on the product of the neutrino transition magnetic moment and the solar

magnetic field based on the recent KamLAND data. We argue that the existence of the

random magnetic fields in the solar convective zone is a natural sequence of the convective

zone magnetic field evolution.

1. Introduction

Recently the KamLAND experiment has announced that the electron anti-neutrino com-

ponent in the solar flux is less than 2.8×10−2% of the solar boron flux at the 90% C.L. [1],

a bound about 30 times more stringent than the latest Super-Kamiokande limit [2].

The presence of electron anti-neutrinos in the solar flux may indicate the existence of

spin-flavor precession (SFP) induced by non-vanishing neutrino transition magnetic mo-

ments [3, 4] interacting with solar magnetic fields or, alternatively, neutrino decays in

models with spontaneous violation of lepton number [5, 6, 7]. Here we discuss the case of

anti-neutrinos produced by SFP conversions.
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The first KamLAND evidence of reactor anti-neutrino disappearance [8] had already

excluded SFP scenarios as solutions to the solar neutrino problem [9]. Together with

the latest KamLAND limit on the solar electron anti-neutrino flux [1] and including the

recent SNO salt results [10] the robustness of the LMA MSW solution to the solar neutrino

problem (SNP)1 against the SFP mechanism was confirmed [13]. However, a neutrino

magnetic moment could still play a notable role and lead to sub-leading, but potentially

observable, effects.

To analyze the SFP conversion several solar magnetic field models were considered

previously, characterized by different assumptions pertaining to their magnitude, location

and typical scales, regular or random nature [14, 15, 16, 17, 18] coming from our lack of

knowledge about solar magnetic fields. Usually the solar magnetic fields are supposed to

reside within the solar convective zone [14, 15, 16] in agreement with dynamo mechanism.

Sometimes they are considered to be located in the solar core or in the radiative zone [17,

18]. Although allowed, these are not physically as persuasive as the former ones.

In what follows we adopt the conservative point of view, assuming a convective zone

magnetic field model and exploiting the fact that in accordance with the present-day un-

derstanding of solar magnetic field evolution, the large-scale magnetic field in the solar

convective zone is followed by a small-scale random component, the strength of which is

comparable to or even larger than that of the regular one.

The main issue we advocate here is that within the SFP scenario, solar random mag-

netic fields can generally result in a sizable gain in electron anti-neutrino yield, up to

one-two orders of magnitude as compared to regular fields of the same (in the average)

amplitude. This results in more stringent limits on the product of the neutrino magnetic

moment and magnetic field strength, µνB.

2. Neutrinos in random magnetic fields

Let us consider, for simplicity, the spin flavour precession of two Majorana neutrinos in

vacuum [3]. The evolution of the system is governed by the Schrödinger-like equation

i ~ν = H ~ν, (2.1)

where ~νT = (ν1, ν̄2), νi are neutrino mass states,

H = µνBx σ1 − µνBy σ2 − δ · σ3 (2.2)

is the (2 × 2) Hamiltonian, σj – Pauli matrices, µν – the neutrino transition magnetic

moment, Bx and By are magnetic field components perpendicular to the neutrino trajectory

(along z axis), and δ = ∆m2/4E; E and ∆m2 are the neutrino energy and the squared

mass difference, respectively.

In a uniform magnetic field the conversion probability is

P (ν1 → ν̄2;L) =
µ2
νB

2
⊥

δ2 + µ2
νB

2
⊥

sin2

(

√

δ2 + µ2
νB

2
⊥L

)

, (2.3)

1For the recent analysis of the solar neutrino data after the SNO salt results [10] in the simplest three-

neutrino LMA MSW oscillation picture but neglecting neutrino magnetic moments effects see, e.g., [11, 12].
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where L is the neutrino path in the magnetic field region. Hereafter we will not distinguish

z and t assuming z = t for c = 1.

Let us now assume that a probe neutrino crosses a region with a small-scale random

magnetic field with effective scale L0. The neutrino trajectory is divided into about N =

L/L0 correlation cells. For a given realization, the random magnetic field vector is assumed

to be uniform within each cell; the fields in adjacent cells are uncorrelated and, moreover,

within one cell different magnetic field components, transversal to the neutrino trajectory,

are also independent random (Gaussian) variables with zero mean value [14].

In the uniform magnetic field case the evolution matrix U = exp{−iH · z} is trivially

found. For any piece-constant magnetic field profile (set of field domains) it is then just

the product of corresponding unitary matrices,

U(L) =

N
∏

j=1

Uj , (2.4)

where

Uj = exp(−iHL0) = cosωj − i(~σ · ~nj) sinωj (2.5)

with

ωj = Dj · L0, Dj =
√

δ2 + µ2B2
j⊥,

~nj = (µνBjx,−µνBjy,−δ) · D
−1
j ~n2

j = 1.
(2.6)

The neutrino conversion probability after crossing the random magnetic field region is

therefore equal to the corresponding matrix element,

P (ν1 → ν̄2;L) = 〈0|U
∗
1U

∗
2 ...U

∗
N

1− σ3

2
UN ...U2U1|0〉, (2.7)

where |0〉T = (1, 0) is the initial neutrino state and (1− σ3)/2 = diag(0, 1) is the projector

on to ν̄2 state. Because of the multiplicative nature of the evolution matrix, Eq.(2.4), we

perform the averaging of the conversion probability step by step. After commutation we

obtain the following inner matrix structure

U∗
N

1− σ3

2
UN =

1

2
[1− cos(2ωN ) · σ3 − sin(2ωN ) · [~nN × ~σ]3 − 2 sin2 ωN · nN,3(~σ~nN )]. (2.8)

Taking into account that averaging over random magnetic fields in the N -th cell washes

out all terms proportional to odd powers of B
(N)
x and B

(N)
y , we obtain

〈

U∗
N

1− σ3

2
UN

〉

av
=

1

2

[

1−
(

1− 2
〈(

1− n2
N,3

)

sin2 ωN

〉

av

)

σ3

]

, (2.9)

that is just the same diagonal matrix as the initial projection operator modified only by a

scalar factor in front of σ3.

Therefore by induction and after some algebra we obtain

〈P (ν1 → ν̄2;L)〉av =
1

2
−

1

2

N
∏

j=1

(

1− 2P
(c)
j

)

, (2.10)
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where P
(c)
j is the averaged conversion (flavour-changing) probability in the j-th correlation

cell given by

P
(c)
j =

〈

µ2
νB

2
j⊥

δ2 + µ2
νB

2
j⊥

sin2
(√

δ2 + µ2
νB

2
j⊥L0

)

〉

av

. (2.11)

When all conversion probabilities are small, i.e. when µ2
ν

〈

B2
⊥

〉

¿ δ2 (and this is the case

for solar neutrino oscillation parameters and realistic magnetic fields, see below), Eq.(2.10)

is greatly simplified,

〈P (ν1 → ν̄2;L)〉av ≈
N
∑

j=1

P
(c)
j =

N
∑

j=1

µ2
ν

〈

B2
j⊥

〉

δ2
sin2 (δ · L0) . (2.12)

The above results mean that because of the randomness of magnetic fields the neutrino

spin-flavour evolution looses coherence, that is instead of dealing with wave functions it is

necessary to consider probabilities. Therefore for small conversion the resulting effect is of

cumulative nature and the probability is proportional to the number of correlation cells of

the random magnetic field.

Let’s assume that all root-mean-square random field amplitudes in different cells are

equal to the strength of some constant regular magnetic field. In this case we see that

the above result is proportional to the number of correlation cells traversed by neutrino,

N = L/L0, thus leading to a sizable gain in neutrino conversion in random field as compared

with the case of a constant magnetic field of the same amplitude. Indeed, in the case of

regular field from Eq.(2.3) we have

P (ν1 → ν̄2;L) ≈
µ2
νB

2
⊥

δ2
sin2 (δL) +O

(

(

µ2
νB

2
⊥

δ2

)2
)

≈
µ2
νB

2
⊥

2δ2
, (2.13)

that is similar to the case of neutrino passing only one cell of the size L.

3. Neutrinos in solar random magnetic fields

The simplified approach given above can be taken over to the general case of the neutrino

spin flavour precession in solar random magnetic fields [13]. Within this generalized picture

(LMA-MSW + SFP), after the MSW flavour conversion occurred in the inner region of the

Sun, ν̄e’s are produced due to the magnetic moment conversion νµ → ν̄e in the convective

zone magnetic field. The two-flavour Majorana neutrino evolution Hamiltonian in matter

and magnetic field is well–known to be four–dimensional [3, 4]. However for solar convec-

tive zone random magnetic fields the full 4× 4 evolution equation decouples into two 2× 2

equations describing LMA-MSW oscillations deep in the Sun and the following (approxi-

mate) vacuum SFP conversions inside the solar convective zone [13]. This is explained by

smallness of two main parameters, V/δ ' 10−2 , where V is the matter potential within

the convective zone, and

κ =
µ2
νb

2
⊥

δ2
= 2.5× 10−5

(

µν
10−11µB

)2( b⊥max

100kG

)2(7× 10−5eV2

∆m2

)2(
E

10MeV

)2

. (3.1)
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Figure 1: Bounds on µ11Bmax for random magnetic field versus correlation scale L0 (solid line).

The horizontal dashed line indicates the bound on µ11Bmax for Kutvitsky-Solov’ev regular magnetic

field. µ11 is magnetic moment in units of 10
−11 Bohr magneton. Details are given in text.

The first parameter tells us that the matter effects inside the convective zone are negligible

and can be safely neglected. The smallness of the parameter κ allows to use the perturbative

approach described in Section 2.

4. Results and Discussion

From the above discussion one sees that spin flavor conversion is much more efficient in

producing solar anti-neutrinos for random magnetic fields than for the case of regular fields.

To confirm our conclusions numerically we compute the limits on µνB both for regular and

for random magnetic fields. The results are plotted in Fig. 1. The full available set of

neutrino data was taken into account along with recent KamLAND bound on the electron

anti-neutrino flux [1]. To make connection with previous results the Kutvitsky-Solov’ev

magnetic field [9, 15] was taken as a reference regular field as well as the root-mean-square

random field shape. Here the correlation scale L0 was considered as an additional free

parameter. For regular fields we obtain the constraint

µνBmax < 10−11µB × 470 kG at 90% C.L.

On the other hand for the random magnetic field case one finds, in the most conservative

case,

µνBmax < 10−11µB × 250 kG at L0 ∼ 950 km (90% C.L)

while for the most optimistic case

µνBmax < 10−11µB × 50 kG at L0 ∼ 100 km (90% C.L).
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If we further specify the random magnetic field model to be of the turbulent type one can

eliminate a dependence upon the correlation scale since neutrinos effectively feel only one

scale with the space period equal to the neutrino oscillation length [13].

Taking into account that the present-day understanding of the solar magnetic field

evolution leads to small-scale convective zone random magnetic fields comparable or even

exceeding the large-scale ones, we can conclude that the former indeed can play an impor-

tant role in the analysis of the solar neutrino data.
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