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Abstract: We discuss the various scales determining the temporal behaviour of correla-

tion functions in the presence of eternal black holes. We point out the origins of the failure

of the semiclassical gravity approximation to respect a unitarity-based bound suggested

by Maldacena. We find that the presence of a subleading (in the large N approximation

involved) master field does restore the compliance with one bound but additional configu-

rations are needed to explain the more detailed expected time dependence of the Poincare

recurrences and their magnitude.

1. Introduction

Hawking’s semiclassical analysis of black hole evaporation suggests that most of the

information contained in initial scattering states is shielded behind the event horizon,

never to return back to the asymptotic region far from the evaporating black hole [1]. In

this picture, the singularity is capable of absorbing all the infalling information, which is

then destroyed or transmitted to other geometrical realms, depending on one’s hypotheses

about the microphysics of the singularity. From the point of view of measurements on

the Hawking radiation, the evaporation is not described by a unitary S-matrix. Rather,

quantum coherence is violated and the linear evolution in Hilbert space takes pure states

into mixed states. Still, probability is conserved, since density matrices ρ remain Hermitian,

ρ† = ρ, positive, ρ > 0 and normalized, Trρ = 1 under time evolution.

The AdS/CFT correspondence [2] is not consistent with this picture. In this construc-

tion, quantum gravity in a (d + 1)-dimensional asymptotically Anti-de Sitter spacetime

(AdS) of curvature radius R is defined in terms of a conformal field theory (CFT) on a
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spatial sphere Sd−1 of radius R. The effective expansion parameter in the gravity side

1/N2 ∼ GN/R
d−1, maps to an appropriate large N limit of the CFT. For example, for

two-dimensional CFT’s N 2 is the central charge. When the CFT is a gauge theory, the

AdS side is a string theory, N is the rank of the gauge group, and the string perturbative

expansion in powers of gs ∼ 1/N is identified with ’t Hooft’s 1/N expansion in the gauge

theory side.

According to this definition, the formation and evaporation of small black holes with

Schwarschild radius RS ¿ R, should be described by a unitary process in terms of the CFT

Hamiltonian. Thus, there is no room for violations of coherence as a matter of principle.

Unfortunately, the CFT states corresponding to small black holes are hard to describe,

and it remains a challenge to put the finger on the precise error in Hawking’s semiclassical

analysis in that case.

For large AdS black holes with Schwarschild radius RS À R one may attempt to rise

to the challenge, since they are thermodynamically stable and can exist in equilibrium at

fixed (high) temperatures 1/β À 1/R. Indeed, the corresponding Bekenstein–Hawking

entropy scales like that of N 2 conformal degrees of freedom at high energy,

S ∼
√
N (E R)

d−1
d ∼ N2 (R/β)d−1 . (1.1)

Therefore, large AdS black holes with inverse Hawking temperature β ¿ R describe the

leading approximation to the thermodynamical functions of the canonical CFT state

ρβ =
e−βH

Z(β)
, Z(β) = Tr exp(−βH) . (1.2)

This suggests that we can test the semiclassical unitarity argument by careful analysis

of slight departures from equilibrium, rather than studying a complete evaporation insta-

bility in the vacuum. Ref. [3] proposes to look at the very long time structure of correlators

of the form

G(t) = Tr [ ρA(t)A(0) ] , (1.3)

for appropriate Hermitian operators A. In the semiclassical approximation, one expects

these correlators to decay as exp(−Γ t) with Γ ∼ β−1. However, because the CFT lives

in finite volume, the spectrum is actually discrete (c.f. Fig 1), and the correlator must

show nontrivial long time structure in the form of Poincaré recurrences (see [4, 5]). This

result, which is straightforward from the boundary theory point of view, has far reaching

consequences as far as the bulk physics is concerned.

Hence, the failure of G(t) to vanish as t→ ∞ can be used as a criterion for unitarity

preservation beyond the semiclassical approximation. This argument can be made more

explicit by checking the effect of coherence loss on the long-time behaviour of G(t). Us-

ing the results of [6] one can simulate the required decoherence by coupling an ordinary

quantum mechanical system to a random classical noise. It is then shown in [7] that this

random noise forces G(t) to decay exponentially for large t, despite having a discrete en-

ergy spectrum. This shows that the long-time behaviour of correlators probes the strict

quantum coherence of the bounded system.
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At the same time, one would like to identify
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Figure 1: The energy spectrum of

a CFT representing AdSd+1 quantum

gravity. The spectrum is discrete on a

sphere of radius R, with gap of order

1/R. The asymptotic energy band of

very dense “black hole” states sets in be-

yond energies of order N2/R. The cor-

responding density of states is that of a

conformal fixed point in d spacetime di-

mensions.

what kind of systematic corrections to the leading

semiclassical approximation are capable of restor-

ing unitarity. A proposal was made in [3] in terms

of topology-changing fluctuations of the AdS back-

ground. Our purpose here is to investigate these

questions and offer an explicit estimate of the in-

stanton effects suggested in [3] (see also [8]). Ul-

timately, this analysis should provide information

about the nature of the black hole singularity.

2. Long-time Details of Thermal Quasi-

equilibrium

Poincaré recurrences occur in general bounded

systems. Classically they follow from the compact-

ness of available phase space, plus the preservation

of the phase-space volume in time (Liouville’s the-

orem). Quantum mechanically, they follow from

discreteness of the energy spectrum (characteristic

of spatially bounded systems) and unitarity, since

Gβ(t) =
1

Z(β)

∑

i,j

e−βEi |Aij |2 ei(Ei−Ej)t (2.1)

defines a quasiperiodic function of time (we have

chosen the canonical density matrix for the initial

state). After initial dissipation on a time scale Γ−1,

where Γ measures the approximate width of matrix elements of A in the energy basis, the

correlator will show O(1) “resurgences” when most of the relevant phases complete a period

(c.f. Fig 2). The associated time scale is tH ≡ 1/〈ω〉, with 〈ω〉 = 〈Ei − Ej〉 an average

frequency in (2.1). We can estimate 〈ω〉 as Γ/∆nΓ, where ∆nΓ is the number of energy

levels in the relevant band of width Γ. Introducing the microcanonical entropy in terms of

the level-number function as n(E) ≡ expS(E), we have

∆nΓ ≈
∫ 〈E〉+Γ/2

〈E〉−Γ/2
dE

dn

dE
=

∫ 〈E〉+Γ/2

〈E〉−Γ/2
dE β(E) eS(E) ≈ Γβ eS(β) . (2.2)

where we have introduced the microcanonical inverse temperature as β(E) ≡ dS/dE.

From this analysis we obtain an estimate

tH ∼ β eS(β) . (2.3)

Following [9] we call this the Heisenberg time scale. Poincaré times can be defined in terms

of quasiperiodic returns of Gβ(t) with a given a priori accuracy. In a sense, the Heisenberg

time is the smallest possible Poincaré time.
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Figure 2: Schematic representation of the very long time behaviour of the normalized time cor-

relator L(t) in bounded systems. The initial decay with lifetime of order Γ−1 is followed by O(1)

“resurgences” after the Heisenberg time tH ∼ β exp(S) has elapsed. Poincaré recurrence times can

be defined by demanding the resurgences to approach unity with a given a priori accuracy, and

scale like a double exponential of the entropy.

A more quantitative criterion can be used by defining a normalized positive correlator,

L(t), satisfying L(0) = 1, and its infinite time average,

L(t) ≡
∣

∣

∣

∣

G(t)

G(0)

∣

∣

∣

∣

2

, L ≡ lim
T→∞

1

T

∫ T

0
dtL(t) . (2.4)

The profile of L(t) is sketched in Fig 2. The time average can be estimated by noticing

that the graph of L(t) features positive “bumps” of height ∆L and width Γ, separated a

time tH , so that

L ∼ ∆L

Γ tH
. (2.5)

For the case at hand ∆L ∼ 1, tH ∼ β eS , and we obtain (c.f. [5, 7])

L ∼ e−S(β)

β Γ
. (2.6)

Since both β and Γ scale as N 0 in the large-N limit of the dual CFT, the “recurrence index”

L ∼ exp(−N 2) scales as a nonperturbative effect in the semiclassical approximation.

Indeed, one finds L = 0 in gravity perturbation theory in the AdS black hole back-

ground. The reason is that the relevant eigenfrequencies ω (the so-called normal modes

of the black hole) form a continuous spectrum to all orders in the 1/N expansion. For a

static metric of the form

ds2 = −g(r) dt2 + dr2

g(r)
+ r2 dΩ2

d−2 , (2.7)

the normal frequency spectrum follows from the diagonalization of a radial Schrödinger

operator

ω2 = − d2

dr2∗
+ Veff(r∗) , (2.8)
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with

Veff =
d− 2

2
g(r)

(

g′(r)

r
+

d− 4

2r2
g(r)

)

+ g(r)

(

−∇
2
Ω

r2
+m2

)

(2.9)

for a scalar field of mass m (analogous potentials can be deduced for higher spin fields).

Here we have defined the Regge–Wheeler or “tortoise” coordinate dr∗ = dr/g(r).

r * *
r

r
*

exp (4     r   /      )
*

π β

V
eff V

eff

*
oo − r =       R / 2* π r    

*
= π R /2

r = 0

Figure 3: The effective potential determining the semiclassical normal frequency modes in a

large AdS black hole background (left). In Regge–Wheeler coordinates the horizon is at r∗ =

−∞, whereas the boundary of AdS is at r∗ = πR/2 (only the region exterior to the horizon

appears). There is a universal exponential behaviour in the near-horizon (Rindler) region. The

effective one-dimensional Schrödinger problem represents a semi-infinite barrier with a continuous

energy spectrum. This contrasts with the analogous effective potential in vacuum AdS with global

coordinates (right). The domain of r∗ is compact and the spectrum of normal modes is discrete

with gap of order 1/R.

We have shown in Fig. 3 the form of the resulting effective potentials for large AdS

black holes, compared with the case of the vacuum AdS manifold. The vacuum AdS

manifold, corresponding to the choice g(r) = 1+r2/R2 in (2.7), behaves like a finite cavity,

as expected. The distinguishing feature of the black-hole horizon is a a non-degenerate

zero, g(r0) = 0, which induces the universal scaling

Veff(r∗) ∝ exp(4πr∗/β) as r∗ → −∞ , (2.10)

with 1/β = g′(r0)/4π the Hawking temperature and the horizon r = r0 appearing at

r∗ = −∞. The spectrum is thus discrete in pure AdS, and continuous in the AdS black

hole. Physically, this just reflects the fact that the horizon is an infinite redshift surface,

so that we can store an arbitrary number of modes with finite total energy, provided they

are sufficiently red-shifted by approaching the horizon [10]. Since the thermal entropy of

perturbative gravity excitations in the vacuum AdS spacetime scales as S(β)AdS ∼ N0, we

see that the perturbative Heisenberg time of the AdS spacetime is of O(1) in the large-N

limit, leading to LAdS = O(1). On the other hand, we have Lbh = 0 in this approximation.

3. Topological Diversity and Unitarity

It is instructive to understand these perturbative results in the Euclidean formalism,

obtained by t = −iτ in (2.7), followed by an identification τ ≡ τ +β. The resulting metric

for the vacuum AdS spacetime has a non-contractible S1 given by the τ compact direction.

– 5 –
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We call Y this Euclidean manifold. On the other hand, the black hole spacetime with

g(r0) = 0 has different topology, since the thermal S1 shrinks to zero size at r = r0. The

choice 1/β = g′(r0)/4π ensures smoothness at r = r0. We call this Euclidean black hole

manifold X.

The real-time correlation functions in the black hole background, G(t)X , follow by

analytic continuation from their Euclidean counterparts. Since X is a completely smooth

manifold in the 1/N expansion, so is the Euclidean correlator G(it)X for t 6= 0. The

continuous spectrum arising in the spectral decomposition of G(t)X is a consequence of

the contractible topology of X, since the Hamiltonian folliation by τ = constant surfaces

is singular at r = r0.

�������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������

��

��

������

	

��


�
���

����
����

����

�� ��

����

��

������ ��� 

!�!"

#�#$�$

%&

'(
)*

+,

-�-.�.

/0 12

3�34+

+

AdS                                                              AdS

X                                                                 Y

bh thermal

Figure 4: Summing over large-scale fluctuations of the thermal ensemble in which a black hole

spontaneously turns into radiation (and viceversa) is represented in the Euclidean formalism as the

coherent sum of thermal saddle points of different topology. The “cigar-like” geometry X represents

the black-hole master field (in the CFT language) and the cylindrical topology Y represents the

thermal gas of particles.

Therefore, it seems that improving on the semiclassical prediction for L requires some

sort of topology-change process. The proposal of [3] is precisely that: instead of evaluating

the semiclassical correlators on X, one should sum coherently the contribution of X and Y .

Normally one neglects the contribution of Y on a quantitative basis (at high temperatures

R À β). However, here the contribution of X to L vanishes and one is forced to consider

the first correction. Since Y has a discrete spectrum in perturbation theory, the net result

for L should be nonzero in this approximation. Physically, this superposition of Euclidean

saddle points (or master fields, in the language of the CFT) corresponds to large-scale

fluctuations in which the AdS black hole is converted into a graviton gas at the same

temperature and viceversa.
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A more detailed estimate of this “instanton” approximation to L yields (c.f. [7])

Linst ≈ C e−2∆I , (3.1)

where C = O(N 0), ∆I = IY − IX and I = − log Z(β), calculated in the classical gravity

approximation. Since IY ∼ −N 0 and IX ∼ −N 2, the exponential suppression factor is of

order exp(−2|IX |) ∼ exp(−N 2), reproducing the expected scaling (2.6), at least in order

of magnitude (however, in general SX 6= −2|IX |, even at high temperature).

However, the apparent success of (3.1) turns out to be somewhat coincidental. If we

consider the full time profile of L(t) rather than the infinite time average, we find

L(t)inst ≈ L(t)X + C e−2∆I L(t)Y . (3.2)

The resulting structure is shown in Figs. 5 and 6. The instanton approximation to the

normalized correlator features the normal dissipation with lifetime Γ−1 ∼ β coming from

the contribution of X. However, the resurgences are controlled by L(t)Y , damped by a

factor exp(−2∆I) ∼ exp(−N 2), and separated a time tH(Y ) ∼ N 0.

L(t)

t

1

    

exp (− N    )

t
c t   +  t    (Y)c H

2

Figure 5: The instanton approximation to the correlator L(t)inst features the expected ex-

ponential decay exp(−Γ t) induced by the contribution of the X-manifold, whereas the resur-

gences are entirely due to the interference with the Y -manifold, leading to small bumps of order

exp(−2∆I) ∼ exp(−N 2), separated a time tH(Y ) ∼ N0. These bumps are noticeable against the

background of the X-manifold after a time tc ∼ ∆I/Γ.

Hence, the very long time behaviour as shown in Fig. 6 is very different from the

expected one, although the infinite time average comes out right in order of magnitude:

L ∼ ∆L

Γ tH
∼ e−N2

Γ · β ∼
1

Γ · β eN2 . (3.3)

We can also find the time scale tc for which the large-scale instantons considered here

are quantitatively important on the graph of L(t). This is shown in Fig. 5 and yields

tc ∼ ∆I/Γ ∼ N 2.
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4. Conclusions

The study of very long time features of correlators in black hole backgrounds is a

potentially important approach towards unraveling the mysteries of black hole evaporation

and the associated physics at the spacelike singularity. We have seen that large scale

topology-changing fluctuations proposed in [3] begin to restore some of the fine structure

required by unitarity, but fall short at the quantitative level. Presumably the appropriate

instantons occur on microscopic scales and involve stringy dynamics.

L(t)

t

1

t     (Y)                               t
H H

e −N2

Figure 6: Schematic representation of the very long time behaviour of L(t)inst (dark line) compared

to the expected pattern for the exact quantity L(t). The resurgences of L(t)inst occur with periods of

order tH(Y ) = O(N0) and have amplitude of order exp(−N 2)¿ 1. The expectations for the exact

CFT, in the dashed line, are O(1) resurgences with a much larger period tH ∼ exp(N2) À tH(Y ),

corresponding to tiny energy spacings of order exp(−N 2). Despite the gross difference of both

profiles, the infinite time average is O(e−N2

) for both of them.

While semiclassical black holes do faithfully reproduce “coarse grained” inclusive prop-

erties of the system such as the entropy (c.f. [11]), additional dynamical features of the

horizon may be necessary to resolve finer details of the information loss problem. Roughly,

one needs a systematic set of corrections that could generate a “stretched horizon” of

Planckian thickness [12]. The crudest model of such stretched horizon is the brick-wall

model of ’t Hooft [10]. In this phenomenological description one replaces the horizon by

a reflecting boundary condition at Planck distance ε ∼ `P from the horizon. This defines

a “mutilated” Xε manifold, of cylindrical topology, leading to a discrete spectrum of the

right spacing in order of magnitude.

We have also seen that the characteristic time for large topological fluctuations to be

important is tc ∼ O(N 2) in the semiclassical approximation. In [13] it was argued that

semiclassical two-point functions probe the black hole singularity on much shorter charac-

teristic times, thereby justifying the analysis on the single standard black hole manifold.

However, we have seen that detailed unitarity is only restored on time scales of order

tH ∼ exp(N 2). Thus tc ¿ tH and we conclude that such semiclassical analysis of the

singularity is bound to be incomplete, as it misses whatever microphysics is responsible for

the detailed unitarity restoration in the quantum mechanical time evolution.
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