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Abstract: I present some results, obtained in collaboration with A. Waldron, concerning

local currents, particularly the stress tensors T µν , of free higher (>1) spin gauge fields.

While the T µν are known to be gauge variant, we can express them, at the cost of mani-

fest Lorentz invariance, solely in terms of (spatially nonlocal) gauge-invariant field com-

ponents, where the “scalar” and “spin” aspects of the systems can be clearly separated.

Using the fundamental commutators of these transverse-traceless variables we verify the

Poincaré algebra among its generators, constructed from the T 0
µ and their moments. The

relevance to the interaction difficulties of higher spin systems is mentioned.

1. Introduction

Gauge fields with spin >1 enjoy a (deservedly) bad reputation, at least when they are not

parts of some infinite tower, possibly in nonflat backgrounds. Their best-known problems

lie in the difficulty of consistent interaction with gravity, and (with the sole, but significant,

exception of self-interaction spin 2, aka general relativity) with themselves. Here I want

to give a brief and preliminary discussion of work with A. Waldron [1] of a related but

rather different aspect of gauge field problems, namely the unavoidable gauge variance of

their stress-tensors T µν = T νµ; non-symmetric tensors are uninteresting because they do

not define rotation generators. What has been known for some time [2] is that those of

their spatially integrated moments corresponding to the Poincaré generators (Pµ, J
αβ) are

nevertheless both gauge invariant and obey the Poincaré algebra ensuring the invariance

of the underlying theory. More precisely, the result of [2] is that all the gauge dependence

of the T 0µ is concentrated in identically conserved superpotential S0µ ≡ ∂2
αβ∆

0αµβ , where

the ∆ have the algebraic symmetries of the Riemann tensor. This means that S 00 ≡

∂2
ij∆

0i0j can contribute neither to the energy
∫

d3xT 0
0 , nor to the boostsK i =

∫

d3x xiT 00.

Likewise, the effect of S0i ≡ ∂2
k`∆

0ki`+ ∂2
k0 ∆

0ki0 vanishes both in the momentum
∫

d3xT 0
i
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and in the rotation generators
∫

d3x(xiT 0j − xjT 0i). [That the first part of S0i does not

contribute is obvious; the second doesn’t due to the (ik) symmetry of ∆0ki0.] So all free

fields in flat space are indeed safe (we will also discuss deSitter backgrounds in [1]). In fact

one could finish the discussion right here by noting that as long as a current is conserved

on shell in a field theory, and plays no dynamical role as a “source” then all that need

be demanded of it is that its spatial integrals produce gauge invariant generators of the

corresponding transformation (here Poincaré rotations). But then free fields are always

well-behaved and dull. It is in their role and effects when interaction is introduced that the

local currents must come under scrutiny; at the very least they must consistently couple

to gravity, so their T µν do count!

That T µν is gauge variant for spin >1 (we stick to massless, gauge, fields throughout)

is obvious: The form of T µν , in terms of potentials, φαβ... is of course T ∼ a∂φ∂φ+ bφ∂2φ;

the b term can generally be exchanged for a superpotential. [Correspondingly T ∼ ψ∂ψ for

fermions, which face the same problems for s > 1
2
, except that there is one less derivative.

We leave this parallel story to the reader.] But for s > 1 at least two derivatives are

required to define local gauge invariants, namely (linearized) “curvatures”. [The Maxwell

tensor is safe because the curl of Aµ is already invariant, and A∂2A terms needn’t appear.]

From this point of view, it seems miraculous that the Poincaré generators are invariant;

our approach should also dispel this paradox.

2. Vector Currents

It is perhaps instructive to note first that loss of gauge invariance in currents already

occurs at spin 1, where the current is the vector jµ associated with invariance under

internal rotations of a multiplet of vector gauge fields, rather than with the space-time

invariances of T µν . The simplest example is a doublet, the complex field Cµ obeying

Maxwell’s equations. The associated (neutral) current is jµ = (iGµν∗Cν + c.c.), unique up

to superpotentials ∆jµ ≡ ∂νΣ
µν , Σµν = −Σνµ. The dependence on the potential Cν , and

not only on the field strength Gµν = ∂µCν − ∂νCµ, is the source of gauge variance here,

and cannot be “improved” away. The total charge Q =
∫

d3x j0 is (of course) conserved

and gauge invariant (on shell) under the local gauge transformation: since j 0 ∼ G0i∗Ci,

then δj0 → ∂i(G
0i∗ Λ) under δCi = δi Λ, owing to the Gauss constraint ∂iG

0i = 0. The

“gauge-invariant” form of j0 is best exhibited in radiation gauge, where Ai, like G
0i, is

also transverse: j0 ∼ G∗T
0i A

T
i , or equivalently j0 ∼ GT

0i A
T
i + ∂i(G

T
0i A

L). The analogy to

stress tensors can be taken one more step. Just as spin 2 can be deformed to GR when

coupled to its stress tensor, so does the coupling of complex field above to jµ deform to

become Yang–Mills when a third, neutral, Aµ field is introduced to provide the jµ(C)Aµ

interaction [3] and complete the triplet, (Cµ, Aµ).

3. Stress Tensors

Our aim is to exploit the fact that renouncing manifest Lorentz invariance allows us to

restate T µν in “manifestly” gauge-invariant form – making gauge choices to be sure.
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The existence of gauge invariant representations of T µν can be understood as follows.

For concreteness, we use D=4, where all s > 0 gauge fields have just two independent,

helicity ±s, modes, obeying the wave equation. [These theories are formulated in terms

of totally symmetric tensors ϕµ1 ...µs (subject to double tracelessness for s > 3).] They

correspond (say in symmetric tensor representation) to (spatially nonlocal) transverse-

traceless spatial component φTTij.... The other field components are constraint variables,

Lagrange multipliers or pure gauges. Hence the original, gauge invariant, action 1 will

reduce, upon enforcing the constraints, but in any gauge, to the simple “oscillator” form

I =

∫

d4x

[

2
∑

1

pAq̇A −H(p, q)

]

, H =
1

2

{

p2 + (∇q)2
}

. (3.1)

The two conjugate pairs (pA, qA) denote the appropriate spatial TT variables, with implicit

summation over indices. While this representation of the action seems to contain just two

“scalars”, the tensorial nature of the variables is implicit in their TT nature. Hence the

generators must be of the form

P0 =

∫

d3x H , P = −

∫

d3x p∇q

J =

∫

d3x {p(r ×∇)q + s p× q} = L + S

K =

∫

d3x rH − tP (3.2)

where the spin term S is shorthand for a suitable index contraction scheme (see below).

[These generators obey the Poincaré algebra at any time t, in particular one can set t = 0 in

K. However, since [K, P0] 6= 0 –boosts are time dependent– only K(t) generates symmetry

transformations of the action (3.1).] This “prediction” in turn implies the existence of a

set, T µν(p, q) = T νµ, that yields the moments (3.2), and obeys on-shell conservation,

∂µT
µν = 0, where p = q̇, ¤q = 0. Indeed, we can be even more explicit and predict that

T 00 = H + S00 , T 0
i = −p∂iq + s∂j(p

j`...qi`...) + S0
i (3.3)

where S0µ are superpotentials. The only role of Tij is to verify that ∂0 T
0
i is a spatial

divergence, and that is in turn guaranteed by the form (3.3). Furthermore the fundamental

commutation relations,

i[pA, q
′
B ] = [δAB(r − r′)]TT , (3.4)

where the right side is TT in each of its variables, guarantee (but non-trivially as we shall

note) the Poincaré algebra among the integrated generators (3.2).

4. Spin 1

We now illustrate the above requirements first with a parallel treatment of the Maxwell field

before going on to the main, s > 1, case. The general procedure, after fixing on a candidate

1In generic gravitational backgrounds, this invariance is lost and is a symptom of the gravitation inter-

action problems.
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conserved T µν (all of which differ by a superpotential), is to insert the constraints, remove

their Legrange multipliers and fix gauge variables, just leaving the desired gauge invariant

pairs (pA, qA). [All such gauge fixings are also only a superpotential away from each other.]

Let’s begin with the “degenerate” spin 1 case, where no gauge fixing is needed, but

constraints still must be solved, as part of the “on-shell” procedure. In first order form,

where (−ET , AT ) are the transverse conjugate variables and B = ∇×AT ,

T 00 = 1
2
(E2 + B2) = 1

2
(p2 + (∇q)2)− 1

2
∂2
ij(qiqj) ≡ Hs + ∂2

ij∆
ij

T 0
i = (E ×B)i = −p∂i q + ∂j(p, qi) ≡ T 0

s i + ∂j(pjqi) . (4.1)

Note the spin term in T 0
i , with unit coefficient, and the fact that apart from it, the rest of

the T 0
µ are of “scalar”, Hs = 1

2
(p2 + (∇q)2), T 0

s i = −p∂i q, form. There is an important

lesson here: The Maxwell Poincaré generators are (taking the boosts at t = 0 for simplicity)

Pµ = Pµ(s) , K i =

∫

d3x xiT 00 = Ki(s) , J = L(s) +

∫

d3x (p× q) . (4.2)

Apart from the extra spin term in (4.2) they are of pure scalar form. But since the scalar

generators “certainly” satisfy the scalar algebra, how does the spin term ever appear in the

boost-boost commutator, [K i, Kj] = εijkJk, since [K i(s),Kj(s)] = εijkLk(s) only? The

answer is subtle and makes essential use of the fact that our variables are transverse, hence

obey the transverse fundamental equal-time commutator,

i[pi, qj′ ] = [δij′(r − r′)]TT
′

≡ δij′δ
3(r − r′) + ∂i∂j′G(r − r′) (4.3)

where G is the Coulomb Green Function. If one keeps track of this extra term, then the

spin part S duly appears. The lesson is that whenever moments are involved, it is essential

to operate in the correct space of transverse (-traceless) tensors.

5. Spin ≥ 2

Let us (at last) turn to the first system of interest, spin 2, i.e., the linearized approximation

of GR about (say) flat space (all higher spins behave the same way). There are (as we

know from GR) infinitely many candidate T µν differing by superpotentials, and none is

(abelian) gauge invariant. One example is the Landau–Lifshitz complex, which is long but

involves only bilinears in the (linearized) Γα
µν ; of course it yields the same T µν as our choice

below, up to a superpotential. More useful is simply the quadratic part of the Einstein

tensor, which we adopt here; one advantage of choosing it,

Tµν ≡ −
1
4
G

Q
µν (5.1)

is that its conservation is an immediate consequence of the Bianchi identities (at each order

in a field expansion) and the on-shell conditions, GL
µν = 0. [The suffixes (Q,L) stand for

(quadratic, linear) expression in hµν ≡ gµν − ηµν ]. Indeed,

0 ≡ (DµG
µν)Q ≡ ∂µG

µν
Q + (ΓLGL)

ν = ∂µG
µν
Q . (5.2)
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The next advantage, aside from not having to exhibit T ij
Q (since we know there is one!),

is that the G0µ are already the energy-momentum constraints in the full theory. Even a

manual calculation is not too difficult, in terms of the only remaining variables (ḣTTij , hTTij ) ≡

(pA, qA), A = 1, 2 after constraints and gauge choices are imposed.

One finds the same story as for spin 1,

T 00 ∼= 1
2
(p2 + (∇q)2)

T 0
i
∼= −p∂iq − 2∂j(pjkqik) (5.3)

where ∼= means up to superpotentials. The fundamental (pA, q
′
A) ETC are suitably higher-

index transverse-traceless versions of the vector case and one may easily extend (5.3) to

arbitrary spins using suitable notation to generalize “p× q”. The integrated generators are

of the “mostly scalar” Maxwell form as well, except for the “bigger” spin term S.

6. Conclusion

I begin with some additional comments: (1) There exist, of course, various representations

of the field variables, such as vierbein form involving a non-symmetric eµα and a connection

ω
αβ
µ . The action can even be made to resemble a multi-photon system with “internal”

index α. But a spin 2 system is not merely a photon multiplet, a difference that ruins the

gauge invariance of the associated symmetric T µν
s (e, ω). In this formulation, the canonical

T
µν
c does retain gauge invariance, but to no avail: only symmetric T µν can define angular

momentum. More generally, field redefinitions cannot cure the basic noninvariance problem

for s = 2, nor a fortiori for higher spins. (2) The formulation we have employed here can

perhaps be generalized to constant curvature backgrounds [1] but not, as noted, to generic

curved spaces. (3) The conditions for Lorentz invariance were realized here by computing

the commutation relations among the Poincaré generators. There is also a well-known local

criterion for Lorentz invariance in QFT, namely the Dirac-Schwinger ETC.

i[T00(r), T00(r
′)] = (T 0i∂i + T 0i′∂′i)δ

3(r − r′) . (6.1)

This form is however, inapplicable here because of the non-manifestly covariant form of our

T 0
µ . For example adding Lorentz-variant terms to T µν is always detected in the integrated

ETC, but not in the local form (5.4). This is a difference worth pursuing.

Finally, we emphasize that our new stress tensors, like the covariant ones, are still not

suitable for coupling, as currents, to gravity because that requires both invariances to be

simultaneously manifest. Indeed, were there a spin 2 gauge invariant tensor, it would imply

existence of a consistent cubic self-interacting model of gravity, with abelian invariance and

without higher derivatives. Finding consistent dynamical sources of generic s > 1 fields

seems even more unlikely in any local context.

This work was supported by the National Science Foundation under grants PHY99-

73935 and PHY01-40365.
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