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1. Introduction

Various connections between non-linear sigma-models and gravity have been the subject of
discussion for some forty years or so; compare [1,2,3,8,10,11,12,13]. Recent discussions have in-
volved links between solitons and gravity [5,6,7,16,17]. We extend these discussions here, where
a link between solitons, sigma-models, and two-dimensional Jackiw-Teitelboim gravity is pre-
sented. Also presented is a construction of sigma-models (specifically maps of the plane to the
2-sphere), given solitons of a generalized type, and we construct corresponding metrics that we
propose should be of interest for more general theories of two-dimensional dilaton gravity. Some
background material on constant curvature metrics and sine-Gordon solitons is included before
generalized sine-Gordon equations are considered.

The author expresses his sincere gratitude to members of the Organizing Committee for the
opportunity to participate in this outstanding Winter School and to the dear people of CBPF for
their kind assistance in many matters.

2. Constant curvature metrics, sine-Gordon solitons, and two-dimensional gravity

The connection between constant curvature metrics and solutions of sine-Gordon equations is
reviewed here, with the introduction of some notation. For a pseudo Riemannian manifgjd
with local expression

m=dimM
ds = Y gijdxdx (2.1)
i,)=1
of the metricg, we shall observe the following sign convention for the curvature tdﬁﬁpand the
scalar curvatur® = R(g) of g, whereg! = [¢']:
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are the Ricci tensor and Christoffel symbols, respectivelg. dfhe Gaussian curvatuke of g is

K = —R/2. We will have an interest in the particular case wiéns two-dimensional:m = 2.

In this case one always has the form&a = (R/2)g;;. That is, the Einstein vacuum equations
Rij— %gij +/\g; = 0automatically holdor a vanishing cosmological constakt These equations
consequently are of less interest and one considers insteadrikteivial Einstein equation (in two
dimensions)

R(g) = A(a constant (2.4)
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due to Jackiw-Teitelboim (J-T) [9,15]. Equation (2.4) is derived from the J-T action integral

1
l3-7(1,9) = g/M v/ |detg dx dx (A—R(g))t (2.5)
by variation of a scalar field(x;, x2)(called adilation). The example
def m(X — vt)
T(Xt) = V1+v2sech———2 2.6
(x) =V h (26)

(with (x1,%2) = (X, T)) appears in section 3 of [6].
GivenA, solutionsg of equation (2.4) can be obtained on the basis of a well-known observa-
tion, where we denote the coordinates, x2) by (x,y): For a functionf (x,y), the metricg defined

by
ds? = cog (f(x,y))dx + sir? (f(x,y))dy? (2.7)

(with g12 = g21 = 0) has scalar curvature

R(0) = 4( fx— fyy)/sin 2f. (2.8)

This follows by (2.3),(2.4), or more directly by the formula

2 ie 2 1 62911 1 62922 1 agll 2
R= Ri212= 5 a2 T35 30 (
011022 Q11022 2 0y 2 0x*  4g11 0y
1 (5922 > 1 00110022 1 dgn 0922] 2.9)
4922 o0x 4911 0xX 0X 4922 ay ay '

of Gauss (for any two-dimensional metric wigh, = g»1 = 0) [14]. Equation (2.8) means thgt
in (2.7) is a solution of the Einstein equation (2.4= f(x,y) is a solution of the sine-Gordon
equation

Examples of solution§(x,y) of equation (2.10) (besides the trivial constant solutions €
Z = the ring of integers) are the soliton ( solid wave) solutions:

1. f(x,y) = 2arctarjexp(a(x— vy))] wherea= (1—v?)" %2 A=2-i.eK = —1.

2. f(x,y) = 2arctarjsinh(avy) /vcosh(ax)] for a, A in example 1. This is goliton-antisoliton(or
kink-antikink) soliton.

3. f(x,y) = 2arctarjasin(vy) /vcosh(ax)] wherea = (1—Vv?)¥/2, A= 2. This is abreathersolution.

Of interest as well is a Euclidean version

def 02U 94U

Au = —
o

= n?sinu(x,t) (2.11)
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of the sine-Gordon equation. Here one considers the metric

dszzcosz(g(x,t))dxz— sinz(g(x,t))dtz (2.12)

(with coordinategx;, x2) = (X,t)), in contrast to the one in (2.7). Using the Gauss formula (2.9)
one has, similarly, tha® = 2A/(sinu), and therefore this metric solves the Einstein equation (2.4)
R=2n? < usatisfies (2.11). Hemnis any positive real number. Far> 0 define

a:a(v)=(1+v2)%,p(x,t):”W,B(x,t):m(;z(\;;t) 2.13)
Then the dilatiort(x,t) in (2.6) is expressed as
1(x,t) = a(v)seclkp(x,t), (2.14)
and
ut(x,t) ' 4arctarfexp(xp(x.t))] (2.15)

are the soliton solutions of (2.11) analogous to the solufipny) = 2arctarjexpa(x— vy)] of
(2.10) in example 1. Moreover the functiods" : R — S? from the plane to the unit 2-sphere
given by

ot L (cosBsina™, sinBsina®, cosa™) (2.16)
for ot def u* /2 are non lineao—models i.e. they areharmonic mapsn the sense of J. Eells and
J. Sampson[4]; see section 3. One has that

+
sina® difsinu7 = seclp, cosa® = Ftanhp. (2.17)
Consequently we can also write
L1 _
P = w(rcosB,TsmB,:Fa(v) tanhp). (2.18)

Equations (2.16), (2.18) connect solitaris non-lineatro—models®*, and two-dimensional grav-
ity via the dilationt, where moreover the metripin (2.12) foru = u™ satisfies the two-dimensional
Einstein-Jackiw-Teitelboim field equatidR(g) = 2n? (by the remark following (2.12)) and is
known to transform to the black hole metric

42 = (- )ar2 4 9T (2.19)

(MPr2 —\2)

by a suitable change of variablést) — (T,r). The explicit transformatio®(x,t) = (01(x,t),
82(x,t)) = (T,r) of the metric (2.12) to the metric (2.19) is given, in fact, by

-1 a(v)tanhp(x,t) +1, X
B1(x.0) = vaOQ[a(v)tanhp(x,t)—1]+v’

B2(x,t) = T(x,t)/m, (2.20)

which implements an observation of J. Gegenberg and G. Kunstatter [5,6], as discovered in [16,17].
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3. A generalization of the sigma-modelsb™ in equation (2.16)

The main point of this section is to generalize the construction of the mh&psR? — S?

in (2.16) in a way to produce new sigma-models. As d¥ie were constructed via the solitons

*in (2.15), we shall seek first an appropriate replacement of these functions. We also consider
the metric in (2.12) where is not necessarily a solution of the sine-Gordon equation, and the
implication of such a metric for gravity.

For the sake of completeness, we define a harmonic map (or non-linear sigma-odel)
(M,g) — (N, h) of pseudo Riemannian manifolds. We proceed locally although a global, coordi-
nate - independent definition is also available [4]. U8t@= (x1,...,%Xm)), (V,W = (Y1,---,¥n))
be local coordinate systems dhN with U ¢ ®~1(V) so that one can consider i@ coordinate
functions®! def yjo®o@ (1< j<n)relative to these systems. We assume ta a smooth
map. Writed; = 6%, and letAq denote the Laplace-Beltrami operatorgof

Ny e Z a[v/|detdd 9] (3.1)
V ‘d t | =1

onU. If Fk are the Christoffel symbols df (see (2.3), withg there replaced bi) then thenon-

linear LaplamansAs(l < s<n) are defined to act o® by

B T (o0 T 09,0 (O(P)) +AgPgp (3.2)

1 kr=1

T™M 3

for pe U. & is harmonicif it satisfies the system of equations

(As®®) = 0,(1 < s< n=dimN). (3.3)

The field equation (3.3) can be derived by a variational principle whererbegy integral
of ® is made stationary with respectd For a Bosonic string, for example, this integral is the
Polyakov integral and the equations (3.3) coincide with the equation of the motion of the string
- say forM= its two-dimensional world sheet amdl= R?%, 26 being the critical dimension. If
M c R? is some interval, thed is simply a smooth curve il and the equations (3.3) are the
familiar conditions that® should be a geodesic. N is a flat space with vanishing Christoffel
symbolsrh- then the conditions (3.3) reduce to the standard conditions for harmonicity. In the case
of M = R?, N = S? with their standard Riemannian metrics, one has the following result. Given
smooth functions!, B : R? — R, the functiond® = @, 5 : R? — S? defined by

Py = (cosBsina, sinBsina, cosa) (3.4)

is harmonic (+.e. it satisfies conditions (3.3)) i, 3 satisfy the conditions

def 0% 0% B, 0B,
Ao = 2 o —[(ax) +(at) 2] sina cosa,
. da 0B da op
(sina)AB+ 2[&& + ﬁﬁ] cosa = 0. (3.5)
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For exampleg™ jE/2 andp in (2.13) satisfy the system (3.5), since we have noteduhat
satisfy the Euclidean sine-Gordon equation (2.11). Hence one can concludbfthamaiyg in
(2.16) are harmonic maps, as asserted in section 2.

A fifth example, which nicely connects non-linear sigma-models and gravity ( this time four-
dimensional gravity) is obtained by taking=R?, N =R x (R — {0}) x R x R,

—en 0 0 en
0 e 0 0
0 0 e1sty, 0
2 0 0 O

g(xt) = [cl) _Ol] ,h(y1,Y2,Y3,Y4) = (3.6)

wheresh denotes the hyperbolic sinecth similarly will denote the hyperbolic cotangent. The
conditions (3.3) here (whese= 4) reduce to the following, where we write = (®!, ®2 3 d%),

Dg = 52 — 2, (= the Laplace- Beltrami operator gf:

ol [ol]* +ag0t 2 o,
X t g
1

(il
DL — DLOF — 5 (@)% — (¥)?] shed? + Ag0d? = 0,
DLl — ¢t1¢t+2[¢2¢3 ¢t2d>]cthCD2+Ag¢3 Wo,

1 1 1 (iv)

5 [(@37 = (@0)7] = 5 [(90)" = (@) = 5 [(®3)° = (¥))7] stFP* +-450" = 0. (37)

These equations follow by a direct computation of the Christoffel symbaisiinf(3.6); see Ap-
pendix 1. On the other hand, the conditigis i), (iii ), (iv) (for @ : M — N to be a sigma-model)
areexactlythe Einstein gravitational equations for a 4-dimensigilahe-symmetrispace-time.
Thus one has another beautiful connection between non-linear sigma-models and gravitation. This
latter one is due to S.Chervon and A. Muslimov [1]; also see [2,3,13].

The key to generalizing the functions in (2.15), and hence the functioshs", is the following
very simple observation: The pdip,3) in (2.13) satisfies the Cauchy-Riemann (C-R) equations:
Px =3 = Bt,pt = 3~ = —B«. Thusp andp are harmonic conjugates. This observation motivates
us now to choose to beany harmonic function on the plarig?: Ap = ax2 P49 atz = 0. SinceR?
is simply connected we now chooBéo be a harmonic conjugate pf p++/—1p is an analytic
function. Motivated by (2.15) and the definitiort = u* /2, we define

def U

u(x,t) OI§f4arctar(expp) ,a = > (3.8)
One has (compare (2.17))
sina = seclp , cosa = —tanhp,
Oy = %ux =pxsecip , ar= %Ut = prsecip,
Au = 2(Ap)sectp — 2(sectptanhp)(pZ + p?) (3.9)
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whereAp = 0, by hypothesis. Therefoa = (sina cosa)(p2 + p?) = (sinacosa) (B + B2) (by
the C-R equations), which is the first equation in (3.5). The second equation there also holds since

AB = 0 ( by definition of), and sincesBy + atBi = 3(PBx+ PiBe) = 3 [Px(—pr) + Pup] (@gain
by the C-R equations} 0. In summary we have therefore shown the following.

Theorem 1.Let p(x,t) be any harmonic function oR? : Ap = pyx+ pi = 0. Let B(x,t) be a
harmonic conjugate gb(x,t). Defineu anda by (3.8). Thea andp are solutions of the system
of equations in (3.5), and hence the functidgs : R? — S? defined in (3.4) is non-linear sigma-
model -i.e. g satisfies the system of equations (3.3). Alssatisfies the generalized type of
sine-Gordon equation

Au = (p2+p?) sinu (3.10)

(by (3.9)), which contrasts equation (2.11).

Consider the metric in (2.12) where we now takéhere to be the function in (3.8) fqy
in Theorem 1. Denote this metric lyp, which is a generalized type of soliton metric, given
equation (3.10). By the remark following (2.12) it scalar curvature is giveBMy (sinu), which
by equation (3.10) equapZ -+ p?) : R(gp) = 2(pZ+ p?), which generally is non -constarite. g,
generally will not solve equation (2.4). One can determine all harmonic conjugate pgjor
which R(gp) is a constant. Such pairs are givengix,t) O ax— bt+c,B(x,t) W bx+ at+d for
suitable real numbera,b,c,d (which is consistent with the paip,) given in (2.31)). To see
this, letf = p+if be the corresponding analytic function. ThEn= py +ifx = px —ipt, by C-R,
= R(gp) = 2| /2. In particular ifR(gp) is a constant theff’| is a constant, and sindé(z) is also
analytic one may conclude théf(z) is a constantpy + ifx = a+ib = p(x,t) = ax+c(t), B(x,t) =
bx+d(t), where by C-Ra=px =B =d'(t),c(t) =pr = —Bx = —b=d(t) =at+d, c(t) =
—bt+ ¢, which proves (i) and (ii).

Given the metriag,, an obvious and very interesting question arises: Can one construct a
transformation of variable®, : R? — R?, (x,t) — (T,r), under whichg, goes (perhaps) to a black
hole metricG, (as we did in (2.20) in the constant curvature seRup 2n?)? One would likeG,
to assume the form

dSZ:A(r)dTZ—:(r:), (3.11)

for example; compare (2.19). The latter metric has scalar curvatéfer)(by(2.9)). In this more
general setting we replace the J-T action integral given in (2.5) by

(g,T) = 22‘/'\/'\/]dethxldxz[VoT—R(g)T] (3.12)

with equations of motion

R(g) = 3)\(/2 oT (varyingt),

Agt+Vo1=0 (varyingg), (3.13)
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whereV is a function ofx, only andAq is given by (3.1); see [7]. Hopefully, future work will
lead to a construction dd,. We note in fact that for the coordinatés, x») = (T,r), the metric

Gp in (3.11) and the dilation(T,r) 't do provide a solution of the field equations (3.13), for
A (r) =V(r). This follows from (3.1) which fog = G, gives

1 @2 0° 0
Thus indeed/’(t(T,r)) = A’(r) = —R(Gp)(T,r) (as noted in the line following (3.11)), which is
the first equation in (3.13), ardg, T)(T,r) +V (1(T,r)) = —A'(r) +A'(r) = 0, which is the second
equation in (3.13).
Note also that the function

uz(x,t) = 4arctan (sinhy/ 1+ v2mx) seovmt (3.15)

v
V142
is a solution of the Euclidean sine-Gordon equatignt+ U = nésinuin (2.11). This can be veri-
fied, for example, by a simple Maple program.

Given the solution (3.15), we can form the corresponding soliton mgfin (2.12) which , in
contrast togy, has constant curvatuie = 2n¥? (again by the formul® = 2A/(sinu) following
(2.12)). Similar to the question posed for the megjg it is meaningful to inquire whether one

can construct a transformatioh,, (as was done in (2.20) for the solitons in (2.15)) that realizes
Ou, as a black hole metric. This is a question that my student, Miss S. Beheshti, is considering.
The solutionuy(x,t) is also called a kink-antikink solution. It describes a collision between a kink
soliton and an antikink soliton.

Appendix 1

For the sake of completeness of the discussion in Sec. 3, we list the values of all the Christoffel
symbols of the metridr in (3.6). Fory = (y1,Y2,¥3,Ya) € R x (R —{0}) x R xR, I'},(y) = 1,

[25(y) = 3. T35(y) = (—sinhys) - coshys, T35(y) = 3, T35(y) = Som2, T11(Y) = 3 . T5,(Y) = — 3,
0 2
F3a(y) = w All other symbols are zero ; of course one has the symrrh‘éjtry F‘J(,
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