1S OF SCIENCE

11D Supergravity as a Gauge Theory for the
M-Algebra

Mokhtar Hassaine,
CECS, Valdivia, Chile
E-mail: hassai ne- at - cecs. cl

Ricardo Troncoso
CECS, Valdivia, Chile
E-mail:ratron-at - cecs. cl

Jorge Zanelli *
CECS, Valdivia, Chile
E-mail: j z- at - cecs. cl

The eleven-dimensional gravitational action invariantdemlocal Poincaré transformations is
given by the dimensional continuation of the Euler claseonfdimensions. Here we show that the
supersymmetric extension of this action leads, through\itbether procedure, to a theory with
the local symmetry group given by thé-algebra. The fields of the theory are the vielbgjnthe
Lorentz (spin) connectiom??, one gravitino ¢,), and two 1-formsb2® andb2"°¢ which trans-
form as antisymmetric Lorentz tensors. These fields are oaemts of a single connection for
the M-algebra and the supersymmetric Lagrangian can be seernat@€hern-Simons form. The
dynamics has a multiplicity of degenerate vacua withouppgating degrees of freedom. The
theory is shown to admit solutions of the fogH—d x X411, whereXqy. 1 is a warped product of
R with ad-dimensional spacetime. Among this class, the gravitatiefiective action describes a
propagating graviton only i = 4 and the spacetime has positive cosmological constantpdihe
turbations around this solution reproduce linearized @driRelativity around four-dimensional
de Sitter spacetime.

Fourth International Winter Conference on MathematicalthMels in Physics
09 - 13 August 2004
Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio @eeiro, Brazil

*Speaker.

Published by SISSA http://pos.sissa.it/



11D Supergravity as a Gauge Theory for the M-Algebra Jorge Zanelli

1. Introduction

Ever since Theodor Kaluza [1] and Oskar Klein [2] conjectured thesipdigy that four-
dimensional spacetime could be a section of a larger manifold where all lapisysics would
be unified, theoretical physicists have tried to realize this dream with vadggeees of success.
This is such a compelling idea, that many of us believe it must be true at sonhebletvere have
mostly failed to pinpoint exactly how it may work. Among the most trodden patlesfionds the
attempt to describe the higher—dimensional spacetimes as Einstein did with muassuming it
faithfully described by the Einstein-HilberEH) action. It turns out that under reasonable assump-
tions, the Einstein theory is uniqgue —modulo the cosmological constant— onlyiimiimensions,
but is one very particular option among many in higher dimensions. In this éeote analyze
some consequences of freeing ourselves from the straitjacket of teeeigHiHilbert action. The
result in this case is not, as one may fear, opening a Pandora’s boXmftad possibilities, but
a controlled and very restricted set of theories known as Lovelocktg®y3]. These theories
extend Einstein’s General Relativity, and a very narrow subset of thésmown to accept simple
supersymmetric extensiohs

The standard procedure to carry out the Kaluza-Klein dream is to sitirtawtheory in a
sufficiently high dimension whose gravitational sector is given by the EHmacfiben, the four-
dimensional physical world is expected to arise from compactification of xtra dimensions
(see, e.g., [4]), or through some more recent alternatives [5]. Thistigeneely reasonable and
straightforward. The problem is that the fact that the low-energy behaf/the universe is four—
dimensional is an assumption rather than a prediction of the theory. Thisdly ltanvincing,
specially since the gravitational part of the action should be in chargdaeriging the properties
of the spacetime geometry including, presumably, the explanation for it$iedfémur—dimensional
appearance.

A manifestation of this problem is the following paradox: since eleven dimealibimkowski
space is a maximally (super)symmetric state, and the theory is well behawediarahen, what
prompts the space to curl up choosing a particular compactification with lesaaslyy as the vac-
uum? And, why not six instead of four dimensions? Ideally, the eleven-dimeal theory should
dynamically predict a low energy regime corresponding to a four-dimeakigffective theory.
In such scenario, a background solution with an effective spacetime diomegreater than four
should be expected to be some sort of false vacuum.

The origin of the problem lies in the fact that the dynamics produced by theadfidn is
insensitive to dimensionality in the sense that its linearized approximation yielddl dehaved
wave equation for all dimensions (greater than three). Clearly, the sadutfdhe equations depend
on D —in particular, black holes, planetary orbits and life itself would be veredffit if D £ 4—,
but there is no compelling reason, within the theory, \izhghould bes.

Here we discuss a theory defined in eleven—dimensional spacetime whekatpnal sector
is singled out by requiring the theory to be locally invariant under the Peéng@up. With this
assumption one can go a long way to specify the entire locally supersymmegitssn and to

1These are the Chern-Simor8S) theories of gravity, which exist in dimensiois= 2n+ 1, and possess local
off-shell invariance under thB-dimensional anti-de Sitter gropQ(D — 1,2), or its contraction, the Poincaré group,
ISOD—1,1).
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study its physical consequences. In particular, after supersymmetnizladidheory turns out to be
invariant under the symmetry group generated by the the maximal extendioa®f = 1 super-
Poincaré algebra in eleven dimensions, commonly knowM-adgebra. This algebra is spanned
by the set of generatofSa = {Jap, Pa, Qu, Zab, Zabcdet» Wheredy, andP, are the generators of the
Poincaré group an@q is a Majorana spinor supercharge with anticommufgtbt]

{Qu,Qp} = (CT®)gaPa+ (CM*)gpZap+ (CT29) 4gZapcde. (1.1)

The charge conjugation matriis antisymmetric, and the generat@g andZypcqeare ten-
sors under Lorentz rotations, but otherwise Abelian. This algebra &céaqhto generate the sym-
metries of an underlying fundamental theory in eleven dimensions knownHsadry [8, 9, 10].

Our choice of eleven dimensions may be justified by the wish to explore geoahetrid
dynamical structures that could be regarded as new “cusps” of thebfytlliagram (see e.g., [6]),
in particular because the theory presented here is not equivalent ttatttasd Cremmer-Julia-
Scherk supergravity in eleven dimensions [7]. Other dimensions andsytmenetry groups —such
as the supersymmetric extensions of the AdS group-— are also reasdtetplatizes.

As shown below, the locally supersymmetric extension of the Poincaré invad#ion fixes
the field content to include, apart from the graviggn the spin connectiomf}b and the gravitino
., two one-form bosonic fieldb2®, ba”4e which are rank two and five antisymmetric tensors
under the Lorentz group, respectively. The local supersymmetry ralgddises off-shell, without
need for auxiliary fields.

As will be shown, the supersymmetric Lagrangian can be explicitly written dseancSimons
form. Itis known that for Chern-Simons theories bosonic and fermiorgeagss of freedom do not
necessarily match, since the dynamical fields are assumed to belong toexttmmimstead of a
multiplet for the supergroup [12] and, as it occurs in three dimensiong #xésts an alternative to
the introduction of auxiliary fields (see e. g. [13]).

2. Gravitational sector

General Relativity in dimensions higher than four is generalized by thelsedc_ovelock
theories of gravity. These theories respect the assumptions of geogealance, second order
field equations for the metric, and they include the Einstein-Hilbert lagraraganparticular case
[3]. The Lovelock Lagrangians are linear combinations of the dimensiomatinuations of the
Euler densities from all lower dimensions [14], namely,

[%*]
p=0
with
Lp = Sal...aD Ralaz cee Ralp—laZp A ea2p+1 cee eaD7 (22)

where R} = dwf + wiw] is the curvature two-form (wedge products between forms is under-
stood throughout), and are arbitrary coefficients. In the series (2.1), corresponds to the

2Note that, contrary to the case in standard supergravity, the generadifieomorphisms H,) are absent from
the right hand side of (1.1).
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cosmological constant,; gives the Einstein-Hilbert Lagrangian ahglis the Gauss-Bonnet term.
The Lovelock Lagrangians are by construction invariant under diffaphisms and local Lorentz
transformations, but in odd dimensions there are special choices of éffeciemtsa, for which
the Lovelock Lagrangians acquire a larger local symmetry: PoincaréntiF)fle Sitter, as in the
next table.

Op Local symmetry D = 2n+1)

Arbitrary Lorentz SQD - 1,1), [also for everD]
o, Poincaré  1SO(D—-1,1)

% ( ;) anti-de Sitter SQD —1,2)

(—)P5s ( ;) de Sitter  SO(D,1)

Since the action can be expressed in terms of differential forms withowg tieertHodge dual,
these theories cannot yield higher order field equations: In the firet fmdnalism (analogous to
Palatini's) the field equations can only involve the first exterior derivatofehe dynamical fields
(see, e.g., [15]). Then, if the vanishing torsion condition is imposed, thiedpuations become
at most second order. In the vanishing torsion sector, the theory haartedegrees of freedom
as General Relativity [16]. If the torsion constraint is not imposed, the diguations remain first
order, even if the theory were coupled to otlpefiorm fields without involving the Hodge. In fact,
in this way it is impossible to generate higher derivative terms in this theory.

An action with local Poincaré symmetry must be, in particular, invariant ulued trans-
lations. Since the only field with the right tensor structure to transform ashaection under
translations is the vielbein, an infinitesimal local translation must act on the éislds

3 = DA = dA®+ AP, 3w =0. (2.3)
The unique Lovelock lagrangian invariant under local translations is][Zp

lgle,w] = /M Eay-ay RI2 - - - RRO%0EAIL (2.4)
11

which corresponds to choosing the coefficiems= 6”p.

For the reason given above, we tdkeas the gravitational sector of our theory rather than the
Einstein-Hilbert action, which is not invariant under (233)The Lagrangian in (2.4) is the ten—
dimensional Euler density continued to eleven dimensions and contains tleesied freedom of
eleven dimensional gravity [16].

A local Poincaré transformation acting on the dynamical fields is a gaugddrarationd, A =
d\ + [A,A], with parameteh = AP, + 3A%Jy,, providede® and w? are the components of a
single connection for the Poincaré grodps- €*P, + %ooabJab. This observation will be the guiding
principle for the construction of a locally supersymmetric extensidi of

3Under the transformation (2.3), the Einstein-Hilbert action = [ €,...a,,R*%€% ... €211 changes by a term pro-
portional to €,...a,, R2®2 T e . .. ¢0)11 which vanishes only if the torsion equati®fA = De* = 0 is used. However,
this last condition is incompatible with the transformations beca#8evould be a function oé and hencedw?? would
not vanish. See [18]

006/ 4



11D Supergravity as a Gauge Theory for the M-Algebra Jorge Zanelli

3. Supersymmetric extension

A natural way to construct the locally supersymmetric extension of (2.4) withceaking
local Poincaré invariance is by demanding that the new fields requiredpeysymmetry enter on
the same footing as the original ones. In other words, all dynamical fiélidsarassumed to belong
to a single connection for a supersymmetric extension of the PoincaréalJdta simplest option
would be to consider th@&/ = 1 super Poincaré algebra without central extensions. However, this
possibility must be ruled out. Indeed, in this case, the connection wouldéed=d by the addition
of a gravitino asA — A+ YQ, and the gauge generator would change as A +€Q, whereg is a
zero-form Majorana spinor. This fixes the supersymmetric transfornsatiobe

5.2 = e3P, &Y =De, w*=0. (3.1)

Then, the variation of (2.4) under supersymmetry is canceled by a kinegtidoerthe gravitino of
the form

1 —
y=—3 [, ReclT™DY. (3:2)

whereRapc := Eabca...as RE% - - - R¥2. The variation ofly produces, in turn, an extra piece which
cannot be canceled by a local Lagrangianghm??, andy, and hence the super Poincaré algebra
is not rich enough to ensure the off-shell supersymmetry of the action.

On the other hand, following the Noether procedure, it can be seenubpatsymmetry may
be achieved if additional bosonic fields are introduced. These fieldsrdgie a second-rank or a
fifth-rank tensor one-formk2?, andb2°¢de which transform as

6£bab — a—abw, 58babcde: E_FadeelIJ, (3_3)

respectively.

Assuming that the dynamical fields belong to a single connection for a yupeestric exten-
sion of the Poincaré group, the only option that brings in these extra todselds is to consider
the M-algebra (1.1). Additionally, this also prescribes their supersymmaeaingfsrmations in the
expected form (3.3). This means that the field content is given by the aqmnfoof a single
fundamental field, the M-algebra connection,

1
A= 2 P2Ja0+ €7Pa+ Y% Qq + bPZap + 0P Z e, (3.4)

and the required local supersymmetry transformations (3.1, 3.3) are etbtom a gauge trans-
formation of the M-connection (3.4) with parameter €% Qy.
Thus, the supersymmetric extension of (2.4) is found to be

a
|a = IG+IL|J_6/M RabcRdebabcde
11

+16(1—a)/

M1z

[RPRap — 6(R%)ab|Red (u?rabcdow—eR[abb‘?dl), (3.5)

whereR? := R?®Ry, and (R®)2? := R R4R%". Herea is a dimensionless constant whose meaning
will be discussed below.
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This action is invariant under (2.3, 3.1, 3.3), local Lorentz rotations,adsm under the local
Abelian transformations

6bab Deab 6babcde Deabcde (36)

Invariance under general coordinate transformations is guaranyettte huse of exterior forms.
It is simple to see that the local invariances of the action, including Poincaméfermations,
supersymmetry and the Abelian transformations (3.6), are obtained byga gamsformation of
the M-connection (3.4) with parameter= A2P, + A3 Jp + 03°Z, + 0207 ge+ €9Qq. As @
consequence, the off-shell invariance of the action under the superstry algebra is ensured by
construction without invoking field equations or requiring auxiliary fields.

3.1 Manifest M-covariance

The action (3.5) describes a gauge theory for the M-algebra with fibeliéstructure, which
can be seen explicitly by writing the Lagrangian as a Chern-Simons forjfidiithe M-connection
(3.4). Indeed, the Lagrangian satisfids= <F6>, where the curvature = dA+ A? is given by

1 ~ ~ ~
= ERabJab+ T2P;+ DY Qqy + =5 Zy + £ Zs,

with T8 = De® — (1/2)pray andFK = Db — (1/2)pri¥y fork = 2 and 5. The bracket...)
stands for a multlllnear form of the M-algebra generatégsvhose explicit expression is far from
obvious. In the case at hand, it can be shown that the only nonvanistrimgonents of the bracket
are given by

<‘]ala27 T 7‘]393107 Pall> = l_:-',G‘c‘al-“all )

(Jagan,* * *» Jagares Zabede = —0 45a1 -agabcl[agayg][dd >

<~]a1a2,~]a3a47~]a5a67~]a7a8 Jaeauo Zab> (l G) 16 [66‘7‘..?‘13213 6agaloabég;gg]

(Q,Jaya,, JBN, J3% JA7% Q) = % [Cralaz as+

(1— ) (38,2 Crambd i ocr a2z ) |

where (anti-)symmetrization under permutations of each pair of genersianslerstood when all
the indices are loweréd The explicit form of this bracket allows writing the field equations in a
manifestly covariant form as

(F°Gp) =0. 3.7)

In addition, if the eleven-dimensional spacetime is the boundary of a twéivendional manifold,
0Q12 = M3, the action (3.5) can also be written las fglz <F6>, which describes a topological
theory in twelve dimensions. In spite of its topological origin, the eleven—diioeakaction does
possess propagating degrees of freedom and hence it shouldthoulyht of as a topological field
theory.

4In general, without an explicit representation of the algebra, it is a higbhtrivial exercise to determine the
existence and the form of an invariant tensor of arbitrary rank.
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4. Gravitons and four-dimensional spacetime

We now turn to the problem of identifying one true vacuum of the theory.idisly, a config-
uration with a locally flat connectiofr, = 0, solves the field equations (3.7) and would be a natural
candidate for vacuum in a standard field theory. Moreover, such stiameaigsant under all gauge
transformations and is, therefore, maximally supersymmetric under (3.XB&@)dvhich makes it
likely to be a stable (BPS) configuration.

The identification of this solution with a vacuum state is more compelling in view ofdbie f
that it carries no charges of any kind and invariant under spacetinsfdrarations and supersym-
metry. Matter-free eleven-dimensional Minkowski spacetime is an exampleésofHowever, no
local degrees of freedom can propagate on such backgrounderalripations around it are zero
modes.

In a matter-free configurationp = 0, b@ = 0, bl® = 0, Eq. (3.7) is a set of polynomial
equations of fifth degree in the curvature two-forms. In particular, thesons obtained varying
with respect to the vielbein and the spin connection are

SAAl...AloRAlAZ s RAgAlO =0 (4.1)

?,ABAl.A.AQRAlA2 s RAWASTAQ =0. (42)

Thus, in order to have a propagating connection, the spatial compdﬁ’é‘j‘lmnnot be small.

Alternatively, a deviation that propagates around a flat backgrefiRe- 0 cannot be infinitesimal

and is therefore non-perturbative. Moreover, since the derisadi/e field cannot be small either,
the deviations are necessarily non-local. This feature is not altered briening equations.

Alternatively, in order to have well-defined linearized perturbations,ckdraund solution must

be a simple zero of one of the set of equations. In particular, this rechieesurvature to be

nonvanishing on a submanifold of a large enough dimension.

4.1 Nontrivial vacuum geometry

Let us consider a torsionless spacetime with a product geometry of theXprinx S04,
whereXy. 1 is a domain wall whose worldsheet islalimensional spacetimdy. The line element
is given by

ds? = e 217 (dZ+ g ()R’ ) +vin ¥ (y)dy"dy" 4.3)

wheregff,) stands for the worldsheet metric wighv =0, ....,d — 1; yﬁ},?_d) is the metric ofSt0-d of

radiusrg and¢ is a constant. This Ansatz solves (4.2) identically, while (4.1) takes the form
Eaauby--adamy-m, | R — E2E .. |RAOL g2 | g g™ — 0, (4.4)
wheree? andR2° stand for the vielbein and the Riemann curvature of the worldsheet, tegbec

andk = [952], with 2k +s= 10.
A solution for equations (4.4) is found if the worldsheet has constantiture,

RO _g2@pgh =0.
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This means tha¥ly can be either locally de Sitter spacetime of radjus, or locally Minkowski,
if & = 0. The requirement that the curvature of (4.3) be a simple zero of the fjaktiens, implies
thatk must be one, and therefodecan only be equal to three or four. The cake 3 is readily
discarded as it possesses no perturbations, as in standard thresidimakgravity. Fod = 4, the
only relevant equation for the perturbations is the one that arises fromatladion with respect to
&, the perturbations of the spacetime metric satisfy

£3(2)Eij O(RK —g28 )8 = 0. (4.5)

Since for€ = 0 the perturbation equations (4.5) become empty, Minkowski spacetime mustte
out. In sum, the existence of the propagator requdres4, and the four-dimensional cosmological
constant to be strictly positivé\, = 32,

Note that Eq. (4.5) has support only on the: 0 plane. Perturbations along the worldsheet,
00w = hw(X) reproduce the linearized Einstein equations in four-dimensional de Sitteetsme.
The modes that depend on the coordinates transverse to the worldghiego two classes: those
of the form &Gw = hw(X,y) are massive Kaluza-Klein modes with a discrete spectrum, while
3w = hw(x,2) correspond to Randall-Sundrum-like massive modes whose spectrumtis-co
uous and has a mass gap. The perturbations of the remaining metric conspamerero modes,
which is related to the fact that the equations are not deterministic for the cospzce.

5. Discussion

A. We have presented a framework in which only a four-dimensional spacetimsustain
propagating gravitons. The mechanism is based on an eleven—dimersitoalwhich is a gauge
theory for the M-algebra. Its is shown that the Lagrangian can be wrigem @hern-Simons
form. The possibility of dynamical dimensional reduction arises becaugbdioey has radically
different spectra around backgrounds of different effectigestime dimensions. Thus, in a family
of product spaces of the fordy,1x S99, the only option that yields a well defined low energy
propagator for the graviton s= 4 and/\4 > O.

It should be stressed that for all gravity theories of the type discusseq possessing local
Poincaré invariance in dimensiobs= 2n+ 1 > 5, four-dimensional de Sitter spacetime is also
uniquely selected by the same mechanism as the background for the logy-effective theory
[20]. This is in sharp contrast with the scenario in a (super)gravity yhieased on the Einstein—
Hilbert Lagrangian for the gravitational sector. In the standard c#tseg&jnetic term for the metric
and, consequently, the propagator is equally well behaved (no degeearise) in all dimensions.
In other words, there is nothing in these theories that can producectiffdynamical behaviors for
different dimensions. This may help to resolve the paradox of compactificatémtioned in the
introduction: what prompts the stable Minkowski space to curl up, loogingreetries, and why
does it compactify into 4- (D —4) and not otherwise?

B. The eleven—dimensional action (3.5) has a free pararaetghich reflects the fact that the
theory contains two natural limits, corresponding to different subalgetifrél.1). Fora = 0, the
actionlg in Eq. (3.5) does not depend oY) and corresponds to a gauge theory for the superme-
mbrane algebra, while fax = 1, the bosonic field decouples, ant} is a gauge theory for the
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super five-brane algebra as discussed in [21]. It is interesting to radththlinear combination of
both limits, 4 = lo+ a(l1 — lp), is not only invariant under the intersection of both algebras, but
under the entire M-algebra. As the tel- 1o does not couple to the vielbein and is invariant under
supersymmetry by itselfy is an independent coupling constant. A similar situation occurs in nine
dimensions where, in one limit, the theory corresponds to the super fine-bfgebra, while for
the other it is a gauge theory for the super-Poincaré algebra with aloexteasion [22].

C. In the presence of negative cosmological constant, eleven-dimengid8asupergravity
[12] can be written as a Chern-Simons theorydep(32|1), which is the supersymmetric exten-
sion of AdS1. It is natural to ask whether there is a link between that theory in the vagishin
cosmological constant limit, and the one discussed here. Since the Malgebb5 bosonic gen-
erators more thansp(32|1), these theories cannot be related through a In6ni-Wigner contraction
for a generic value ofi. However, it has been recently pointed out in [23], generalizing the pro
cedure of [24], that it is possible to obtain the M-algebra from an expard osp(32/1). In this
light, applying this procedure to the eleven-dimensional AdS supergragdnthit should be ex-
pected that the action presented here will be recovered up to some addé@romadecoupled from
the vielbein, that are supersymmetric by themselves.
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