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1. Introduction

The present article is based on the results research published recesdiyenal papers, [18],
[19]. It deals with possible generalizations of Born-Infeld non-lineaotly of electromagnetism,
whose non-abelian version quite unexpectedly appears as an efemtivenergy field limit in
certain versions of string Lagrangians.

Our aim is to investigate further possibilities of generalization offered bydhecommutative
geometry. In this version of discretization of space-time structure, noarlinggrangians do ap-
pear, whose structure is similar to the original Born-Infeld Lagrangidue &xtra advantage is the
unification of usual gauge fields with the Higgs-type scalar multiplets, ajpypeiarthe Standard
Model. We believe that this type of effective Lagrangians may be usefutume developments of
field theory and its cosmological applications.

Since Coulomb’s law has been formulated in XVIlI-th century, it was cleat tihe electric
forces become infinite for point-like particles. Later on, when Maxwelhfbhis final and ele-
gant mathematical formulation of electrodynamics, with the introduction of thgygmeomentum
tensor of electromagnetic field, the energy remained infinite for point-likegelsa After the dis-
covery of the electron, physicists started to look for models able to ragréses an extended,
finite-dimensional particle, endowed with finite distribution of charge andggnagensities. The
model proposed by G. Mie [1] could be considered as the most suatessf at the time it was
published. It was based on the idea that Maxwell's electrodynamics sheutdnsidered as a
linear approximation of certain non-linear theory; as long as the field stremgot too high, the
linear theory describes almost perfectly its behavior far away from theespwhich can be con-
sidered point-like as seen from great distance; the non-linear efteatddsbecome dominant at
small distances, where the extended nature of elementary charges rnalsato account.

To this end, Mie introduced the notion nfaximal field strengthEg, and in order to make it
impossible for any electric field to go beyond this value, he modified Maxwelsrthby intro-
ducing the following non-linear lagrangian density for pure electric field

L=]1-—=. (1.1)

Although the non-linear theory derived from this lagrangian enabled Mabtain a non-singular,
finite energy solution, it was clear that such a lagrangian can not esgirasLorentz-invariant
theory, especially that the magnetic field contribution was absent. This is wtrydhd Infeld [2]
have introduced a Lorentz-invariant lagrangian density, definedlas/fo

£31(0,F) = Lei(9,F)/]g] = BZ<\/Ide'(9w)\ -/ det(9w+BlFuv)l>

:[32<1—\/1+B—12(BZ—E2)—é(E-B)2> gl (1.2)

The constanB appears for dimensional reasons, and plays the same role here as the lalitig
of the electric field in Mie’s non-linear electrodynamics. Defining

1 1_ = ey 1
P=ZFRyF" and S= 2Ry F", with széewpap,
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we can write

Lg =P%|1—-V1+2P—2|. (1.3)

Since Dirac introduced his equation for the electron, the interest in classickels of charged
particles has considerably faded. Only in 1970 G. Boillat [3] considBoed-Infeld electrodynam-
ics in order to study its propagation properties. Investigating generalimegr theories derived
from a Lagrangian depending on two Lorentz invariabt® S), he discovered that the Born-Infeld
electrodynamics is the only one ensuring the absence of bi-refringeacgropagation along a
single light-cone, and the absence of shock waves. In this respecbthdiBeld theory is unique
(except for another a singular Lagrangiar= P/S). A beautiful discussion of these properties can
be found in I. Bialynicki-Birula’s paper [4]; see also [5].

An unexpected new impulse for the revival of interest in Born-Infell é@Bctrodynamics and
in its non-abelian generalizations came from string theories, in which Bdehditype lagrangians
appear in effective action for membranes.

Another motivation for studying Bl-types theories is the possibility of exisearfcsolitonic
solutions in non-linear field theories. In a pure Yang-Mills theory in flatsg@me, with the usual
Lagrangian densityyy = —%gAB F@ FBW there are no finite energy static non-singular solutions.
This fact can be explained qualitatively by the conformal invariance ofttkery and the trace-
lesness of the energy-momentum tensor,

3
T“u = —Too+ ) Tji =0. (1.4)
=

Given the positivity of energy, i.&o > 0, this means that the sum of principal pressures is positive:
Y Ti > 0, leading to the conclusion that the Yang-Mills “matter” is naturally subjectedpolsive
forces only.

In the presence of Higgs’ field, the conformal invariance is broked this leads to the exis-
tence of solitonic solutions like 't Hooft’s [6] and Prasad-Sommerfieldisiidgnetic monopoles.
In what follows, we are looking for soliton-like solutions arising in other tioear theories, in-
cluding non-abelian versions of Yang-Mills theory, which are not con#dly invariant, as well as
the pure Higgs-field model with a generalized Born-Infeld type lagrangian

2. Non-abelian generalizations of Born-Infeld theory

In their original paper [2] Born and Infeld considered the now famoastlaction principle

Sei[g,F| = /R4 BZ(\/ det(g)| — \/Idel(gw+B*1 Fu) ’) d*x.

This action can be defined not only on the Minkowskian space-time butakseydocally Lorentzian
curved manifold.

Itis useful to recall here the three basic properties of this lagrangiaihwie want to maintain
in the case of hon-abelian generalization, suited for arbitrary finite dime$igpace-time.
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¢ Maxwell's theory (respectively, usual gauge theory with quadraticalagian density) is
found in the limit — o

S0 = [ 58~ E)VIaidtcr o). @1)

e There exists an upper limit for the electric field intensity, equaP tawhen the magnetic
components of the field vanish

Leilg—o = B?(1— v/1—B2E?), (2.2)

Due to this fact, the energy of a point-like charge is finite, and the field rerfiaiteseven at
the origin. This was the main goal pursued by Mie, [1] suggesting the clobicen-linear
generalization of Maxwell’'s theory. Indeed, for a point chaegme has

__e _ N 2
E_\/W , (n=r/r), Mass_/o( € +r4—re)dr. (2.3)

¢ The Born-Infeld action principle is invariant under the diffeomorphisn®‘oln this respect,
this theory can be viewed as a covariant generalization (in the sensenefdb®&elativity)
of Mie’s theory, as well as an extension of the usual volume eleryégtd*x.

It is also well known that the Born-Infeld electromagnetism has goodatiauproperties as well
as interesting dual symmetries ( electric-magnetic duality, Legendre dualityeje e shall not
consider these properties, our main interest being focused on static 8slutio

The idea of non-abelian generalisation of Born-Infeld theory lagranhés been in the air
already at the end of the seventies. Hagiwara has discussed vargsiisilitees in [8], however, he
did not try to find soliton-like solutions. In 1997 Tseytlin [9] argued in faebthe symmetrized
trace prescription which reproduced in the first 4 orders the stringtefeaction for gauge poten-
tial. Finally Park [10] introduced yet another non-abelian generalisatidiraestigated qualitative
behavior of instanton-like solutions. Also super-symmetric generalisatistibéan proposed for
abelian and non-abelian versions [11, 12, 13].

Only instanton like solutions were discussed in aforementioned paperst sbiitons in
Minkowskian space-time were found in [14], which we shortly recall in tbistisn.

A straightforward generalisation of Bl theory in 4 dimensions can be aetliby replacing
the quadratic invariants of U(1) theory by the non-abelian ones

Fw F? — R FLY and R F? — *FE F2P. (2.4)
The corresponding action is

2
S= B_/ (1—R) d*, where § = \/1+ ip@,:éw

L
16p°

It is easy to see that the Bl non-linearity breaks the conformal symmetryriegshe non-zero
trace of the stress—energy tensor

TH=R"1[4p*(1-R)—F3F] £0. (2.6)

= I 2 (F&FM)2. (2.5)
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This quantity vanishes in the limg — c when the theory reduces to the standard one. For the
Yang-Mills field we assume the usual monopole ansatz

k
AS=0, A'=tak—(1-w(r)), 2.7)

wheren® = x¥/r, r = (X2 +y? 4 2)Y2, andw(r) is the real-valued function. After the integration
over the sphere in (2.5) one obtains a two-dimensional action from vihean be eliminated by
the coordinate rescaling/Bt — t, \/Br — r. The following static action results then

2 —W2)2
S:/Ldr, L=r%(1—®), with K:\/HZ\%*w’ 2.8)
where prime denotes the derivative with respect to r. The corresppedumtion of motion reads
!/
<ﬂ> - w (2.9)
R r<x.

A trivial solution w = 0 corresponds to the pointlike magnetic Bl-monopole with the unit
magnetic charge (embedd&d1) solution). In the Born—Infeld theory it has a finite self-energy.
For time-independent configurations the energy density is equal to minlksgnangian, so the
total energy (mass) is

M:/ (R — 1)redr. (2.10)
0
Forw = 0 one finds
/2
M:/ Vit+1l—r?)dr= —— - ~1.23604978 2.11
( ) 3r(3/4)? &40

Looking now for the essentially non—Abelian solutions of finite mass, wergegshat in order to
assure the convergence of the integral (2.10) the quafitityl must fall down faster tharr 2 as

r — o, Thus, far from the core the BI corrections have to vanish and the BygBould reduce to
the ordinary Yang-Mills equation, equivalent to the following two-dimendianébonomous system

W=u, U=u+W—1w, (2.12)

where a dot denotes the derivative with respeat tolnr. This dynamical system has three non-
degenerate stationary poirfts= 0,w = 0,1), from whichu=w = 0 is a focus, while two others
u=0,w =1 are saddle points with eigenvaluks= —1 andA = 2. The separatices along the
directionsh = —1 start at infinity and after passing through the saddle points go to the Waittus
the eigenvaluea = (1iv/3)/2. It has been proved in [14] thtie only finite-energy configurations
with non-vanishing magnetic charge are the embedded U(1) BI-mdsmpoadeed, such solutions
should have asymptotically = 0, which does not correspond to bounded solutions umesD.
The remaining possibility isv = 1,Ww = 0 asymptotically, which corresponds to zero magnetic
charge. Coming back tovariable one finds from (2.9)

w:1+§+0(r—2), (2.13)
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wherec is a free parameter. This gives a convergent integral (2.10)-aso. The two values
w = 1 correspond to two neighboring topologically distinct Yang-Mills vacuawNonsider local
solutions near the origin= 0. For convergence of the total energy (2.140%hould tend to a finite
limit asr — 0. Then using the Eq.(2.9) one finds that the only allowed limiting valuesvasel
again. In view of the symmetry of (2.12) under reflection— w, one can take without loss of
generalityw(0) = 1. The following Taylor expansion satisfies the Eq.(2.12),

b2(440? +3) ,

—1_phr2 6
w=1-br+ 10(402 1 1) +0(r?), (2.14)

with b being the unique free parameter. As> 0, the function®_tends to
R =Ro+0(r?), Ry=1+120° (2.15)

therefore it is not a solution of the initial system (2.10). What remains to be doto find ap-
propriate values of constahteading to smooth finite-energy solutions by gluing together the two
asymptotic solutions between 0 and

It has been proved in [14] thahy regular solution of th&q.(2.9)belongs to the one-parameter
family of local solutiong2.14)near the origin It follows that the global finite energy solution start-
ing with (2.14) should meet some solution from the family (2.13) at infinity. Sirtk these local
solutions are non-generic, one can at best match them for some disadtede of parameters. This
technique has been used first in [15]

For some precisely tuned value bfthe solution will remain a monotonous function of
reaching the value-1 at infinity. This happens fop; = 12.7463. By a similar reasoning one
shows that for another fine-tuned vale> by the integral curvev(t) which has a minimum in
the lower part of the strip will be stabilized by the friction term in the upper Hethie strip[—1, 1]
and tend tow = 1. This solution will have two nodes. Continuing this process we obtain the
increasing sequence of parameter valygor which the solutions remain entirely within the strip
[—1, 1] tending asymptotically t§—1)". The lower valued, converge very rapidly to the limit
value given by (2.11).

Some analogous solutions have been found in the symmetrized trace gr@sdenipl6, 17].

In [18] we have introduced a new non-abelian generalization of the-Bdefd lagrangian,
and found a family of non-singular soliton-like solutions, using 't Hooftsatz for theSU(2)
gauge potential. As in the case discussed in [14], and in contrast with tiaé Yeng-Mills case,
soliton and magnetic monopole solutions were possible without the preserdmsffield or other
scalar multiplets.

Our starting point is the gauge field tensor associated with a compact andisgoie-gauge
group G, defined as a connection 1-form in the principal fibre bundle over Misk&an space-
time, with its values in4g, the Lie algebra o6s. We chose the representation of the connection in
the tensorial product of a matrix representation of the Lie algglrand the Grassman algebra of
forms overMy.

A=AdX'® Ta, (2.16)

whereT,, ab,...=1,2,...N =dim(G) is the anti-hermitian basis of the particular representation
Rof dimensiondr of 4.
By analogy with the abelian case, we want the lagrangian to satisfy the fotjgwaperties:
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e One should find the usual Yang-Mills theory in the lifiit— oo

e The (non-abelian) analogue of the electric field strength should be bddraim above when
the magnetic components vanish. (To satisfy this particular constraint, weemaigte that
the polynomial expression under the root sign should start with term@#(E?) + ...
whenB2=0)

e The action should be invariant under diffeomorphism&of

The idea is to compute a determinant in the tensor product of endomorphigts Bhd(R%)
andR(A4g). This enables us to introduce the following generalization of the Borrdhfegrangian
density for a non-abelian gauge field:

1
L=/]0] | (F2@ g OHa+B TR @ Ta) | . (2.17)

In the expression above, denotes &SL(2,C) matrix satisfyingJ? = —¢,, thus introducing a
guasi-complex structure. This extra doubling of tensor space is negéssader to ensure that
the resulting Lagrangian is real. In tB&J(2) case, it is possible to compute the lagrangian and we
obtain

L=1-{/(1+2P— Q)2+ (2Ka)2, (2.18)
where
2P = F3FL
Q? = f5F3 x FOWFS « FIPKacpq (2.19)

1 a
Ks = §€anch' Fe F®

With Kaped = 0apOhe — OacObd + 0adOhe- We have then studied spherically symmetric static configu-
rations by considering the well known 't Hooft ansatz

A= (1—K(r)) (Tosin8dd — T,d). (2.20)

Then the action become

/(o R (3 () o e

with T =log(r).
The equations of motion can be written in the standard form:
k=u
2.22
{uZy(k,u,T)u+k(k2—1) ’ (2.22)
with
2 2 _k2)2
kUt =12 u“+2uk(1—k*) 4 (1 —k°)

ré+(1-k?)?
6u(1—k?) [ku? +2u(1— k%) + k(1 —k?)?] [r*+2u? + (1— k?)?]
1%+ (1=K [(r+2u2)2 + (1 - k2)2(r* + 6u2)] '

(2.23)
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Although the equations display asymptotic expansions analogous to thowkifo{R0, 21,
14], careful analysis shows that solutions of the Bartnik-McKinnon {2@¢are excluded here.

Near the origin there are two types of asymptotic development which satisggtiaions of
motion:

_ 5a° g \ 2, @(52-700)—9'°+(9-1)¢" 5 4
k—ko+ar—ko<6—g+1—2a2>r + 1085q? r’+0(r?), (2.24)

whereg = 1—kZ, a# 0 andg # 0 and depending of two free parametkganda.
A second development depends on only one free parameted starts as follows
3b% + 92b% + 608° o)
10+ 20002 + 160"
which correspond to solutions along the separtice With2 discussed in the previous section.

At infinity, the Taylor expansion can be made with respecttd It depends on one free
parameter, denoted loy

(2.25)

k= <1—br2+

2
- <1—§+%+0(%)> . (2.26)
which correspond to solutions along the separatix With —1 discussed in the previous section.

Taking these expansions as the first approximation either=atO or atr = o, we then use
standard numerical techniques in order to generate solutions valid dvengwit was interesting
to note that, when we started from infinity, no fine-tuning was necessadyam arbitrarily fixed
constant would lead to a solution which, when extrapolated te- 0, would define a particular
pair of values of constankg anda. On the contrary, starting from= 0, arbitrarily chosen values of
ko anda would not necessarily lead to good extrapolationateo. Therefore the three parameters
occurring in the asymptotic expansions must be interrelated by two congcpialities. Then the
solutions can be labelled by only one real parameter, and then the two parskganda of (2.24)
are functions of the parametgy.

We have evaluated the energyf the solutions founded and the values of the parankgtier
Tc varying from—10 to 20. The energk is represented as a function of the paramegén Fig. 2.
The energies converge to the lin{,—. = En—. = 1.23605.. which coincides with the energy of
the Born-Infeld monopole.

Our solutions do not interpolate between the two singular poinks=atl andk = —1, but
between the singular point kt= 1 for r = o and a certain valuly (related torc) which is always
lower than 1 and bigger thanl (as a matter of fadtp = O is a solution, which correspond to
monopole solution). This is radically different from the sphaleron like sahstior solutions of
Bartnik-McKinnon type found in [22, 14].

As in the Bartnik-McKinnon case, we can assign to each solution an integéth n— 1 de-
noting the number of zeros of the functiamr the winding number of the corresponding trajectory
in the phase plang, u), as seen in Fig. 1, where a few solutions are plotted.

When the parameteg goes from—oo to +oo0, we observe that this integeigrows from 1 towo.

At certain special values of the parametgrthis integer increases by 1. Here are the first critical
values oftg:

| 1c | 1.658] 4.781] 7.510] 10.092| 13.218] 16.530| 19.813]
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Figure 1: Plots of solutions for the values of = —3,1.2,4,7,10.

3. Born-Infeld type lagrangian for Higgs fields from non-comnutative geometry

In this section we study the Higgs-like fields which naturally appear in théoreos standard
model based on the non-commutative geometry [23]. We show that solitoselikions with finite
energy can not be obtained with pure Higgs fields obeying this versioaradrglized Born-Infeld
dynamics, in the case when the Higgs multiplet reduces to a single scalar. itllat#os corre-
sponds to the particular choice of matrix-valued generalized Higgs fielenwie corresponding
matrix is proportional to the identity. This does not exclude the possibility of selike solutions
in more complicated cases, with many-component Higgs field.

We shall generalize now the non-commutative Maxwell theory developezBini order to
obtain a Born-Infeld like theory. Let us resume the notations and langoiate theory. We
consider the algebral = C*(V) ® Mp(C) with the vector fields spanned by the derivations of
C*(V) and inner derivations d¥1,(C). The differential algebra is generated by the basis of linear
1-forms acting on the derivations. We can consideas a bimodule over itself. Then one defines
a gauge by the choice of an unitary elemerdf 4, satisfyingh(e,e) = 1, with h an hermitian
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10
Figure 2: Energy as function of the parametgr
structure on4. Then any element ofl can be written in the forremwith m € 4 and a connection

on A4 is a map:
0:4—0%4), em— (0e) m+edm (3.1)

In the gaugee, the connection can be completely characterized by an elemeh®!(4):
Ue=ew.

One can also decompoeen vertical and horizontal parts:

W= n+wy,
with
wh=A w=0+0¢. (3.2)

HereA s like the Yang-Mills connection, wherefiss the canonical 1-form of the matrix algebra,
and plays the role of a preferred origin in the affine space of verticahections. It satisfies the
equation:

d6+6%=0

Thengis a tensorial form and can be identified with scalar field multiplet.

Choosing a local basis of derivations@f {e,, e}, where for conveniencg, are outer deriva-
tions of C*(V), ande; = ad(A,), with {A,} a basis of anti-hermitian matrices g, (C), are inner
derivations.

The dual basis will be denoted B9*,62}. In this particular basis, we have:

A=AB", 6 =—N0%, o= ,6%.

If we choose the connection to be anti-hermitian, we can write@?\,82. The curvature tensor
associated witlw is

Q =dw+?,
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we can also define the field strength
F=dA+A?.
Then by "dimensional reduction” one can identify

<, are the constant structure in th®,} basis.
A gauge transformation is performed by the choice of a unitary eletheniM,(C), satisfying
h(eU,eU) = 1. Then in the gaug€ = eU

o =U"twU +UtdU,
0 is invariant under gauge transformations, then
A=U"tAu+U"1du, ¢ =U1quU.

The generalization discussed in the previous section can be adapted tmtbemmutative
gauge theory. The lagrangian which we consider is

\/detlg| — {|det¥ @ g+ I ® Q|} /4",

andQ = QGBLaB with LB the generators of the fundamental representatioB@# + n® — 1).
Qqp are the components of the curvature defined in previous section, andrthanti-hermitian
elements oM(n,C). J is an element o6L(2,C) of square—J¥.

The above lagrangian contains the contribution of two types of fields: tesicéd Yang-Mills
potential A= A,6", corresponding to the usual space-time components of the connectidorome
and the scalar multiplet coming from its matrix componeps @,62 = @BA\,82. In the case when
¢ = 0, this lagrangian coincide with the one studied in [18], and exposed in &wiops section.
The complete analysis of general solutions seems too tedious for the time beisgs why we
shall restrict ourselves to a qualitative analysis of the case when the speccomponents d@
do vanishF,, = 0, leaving only the contribution of scalar multiplet degrees of freedom.

Let us recall the notations which will be used in the subsequent calculatitms basis of
matrix representation of th8U(2)-algebra is chosen as follows

)\a == —loa )\a}\b = —6ab+ Z 8abcAc [Aa7)\b] == Cgb == Zsabc)\c . (33)
Cc

Now we have to evaluate the determinant of the following matrix

1 iDg (3.4)
—iD@1+iH, '
where
H = {Qab}a,b:l,Z,S ) DEP: {DUEPa}azl,Z,Su:O,l,Z,Z%' (3.5)

010/11



Non-Commutative Generalization of Born-Infeld Theory Richard Kerner

From now on, we choose the simplest ansatz with one scalar field only

0=6¢86.

After some algebra, we get the following result

L=1-{1+6(D9)>+9(Dp)* +166%(% — 1)2} 7 /1+ 492(¢ — 1)2.

Let us show now that there no non-trivial static configurations can inedfan this particular
system. To this end, we shall generalize Derrick’s theorem [24] to a@&.ca

The idea of the proof is to use spatial dilatations of the figld — ¢, (r) = ¢ (Ar) to generate
a one parameter curve in the space of fields around such a solution. Bhwarigtional principle
along this curve givedS9,]/0A =0atA =1, i.e.

oL -
/4nr2dr <GT>’¢ —3L> —0. (3.6)

We can show, by algebraic manipulations, that the quantity under the iniegaévays non-
negative, and satisfies (3.6) if and only if it is zero. The solutions arehestrivial onesp’ = 0
and¢ = 0 or 1 which exclude other non-trivial solutions.

We have performed a numerical analysis of the time dependent configueratiahe scalar
field resulting from the simplest ansafiz= ¢(t). It gives an interesting phase space portrait and
confirms the idea that Bl-like theories set an upper bound on velocitiesitfie derivatives o),
and on the field strength as well. Such an ansatz could be of use in cosmelagycoupled with
the scale factoa(t) of Robertson-Friedmann metric. The investigation will be the subject of our
forthcoming paper [25].

The equations of motion in this case take on the following form

b =u,
(1+4X)g(X,Y)u+4ssh(X,Y) =0,

where

s=¢(p—1),§=2p—1

X=&,Y=1°

g(X,Y) =16X(1—9Y)+ (1—3Y)?2

h(X,Y) = ((1—3Y)2+16X)(1—Y +8X) —6(1+4X)(1—-3Y)Y.

At some points of the phase spacis hot well defined. These are the points at which the poly-
nomialg vanishes (red curves in the figure). Nevertheless, in most of the siagesar behavior is
only apparent, because the undetermined rati@spBove to have a finite limit. The total number
of singular points in the phase space is 16, but only 2 of them display angesingularity. In the
14 remaining cases the functioegh(X,Y) vanishes at the same time as the function,Y), but
they ratio remains finite. In the figure below one can observe the 16 afotemed points. The
only two points with genuine singularity are the ones without any vector atfachinem, found
on the central vertical ling = 0.5 on both sides of the horizontal line and close to it.

010/12



Non-Commutative Generalization of Born-Infeld Theory Richard Kerner

The phase space portrait is symmetric by reflection around the verticap kn@.5. Cyclic
trajectories are contained inside the two pentagon-like areas circumsbyilsegaratrices. These
areas are disposed symmetrically with respect to the verticalpline0. One of these areas is
represented in more detailed manner in fig. 5 below.

Figure 3: Characteristic curves and points in the phase space

One can note that in a certain region of the phase space the trajectopesiadic and defined
for all values of timd. If one chooses the initial conditions outside this region, the integration ends
up after some finite time. This means that the solutipfi$ obtained with these initial conditions
have their second derivative divergent after finite time when they hitobrilee curves on which
g=0.

Nevertheless some of these curves, with find-tuned initial conditions, cé&eypnd the sin-
gular curveg = 0 at points at which the indefinite expressions become finite again. Thisypartic
trajectories form a special set; they can be extended beyond the limits afgiom iIshown in fig.

4. and be defined for all values of time R.

4. Conclusion and perspectives

Certain generalizations of the Born-Infeld type lagrangian for scaldsfleave been proposed
by several authors [26, 27]. However, in these papers only formalbgy was used; usually by
inserting a classical scalar field lagrangian under the square root sign.

The highly non-linear behavior of the fiell in this model suggests that when coupled to
gravitation in a standard way, i.e. via minimal coupling resulting from the replané of or-
dinary derivatives by their covariant counterparts, and adding hetétimHilbert lagrangian for
gravitational field it may lead to unusual behavior of cosmological modelg. ifrestigation of
cosmological models using this scalar field will be the subject of our forthappeaper [25].
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Figure 4: Trajectories in the confined region of the phase space
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