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1. Introduction and Berezin’s concept of quantization

According to Berezin [1] a mathematical quantization of a sympletic manifold should be a
family of associative algebras with involution satisfying certain properties. Among these prop-
erties is a functorial one, that says that equivalence should be preserved under quantization. A
typical example is Berezin’s quantum disc, where givenU unit disc in complex plane, with its
canonical sympletic formw = i

2

(
1−|z|2)−2

dzd̄z and the corresponding Poisson bracket{ f ,g}=
i
(
1−|z|2)2(∂ f ∂̄g− ∂̄ f ∂g). One builds a quantization ofU by considering the family of all square

integrable functions with respect to the measuresmh = i
2

(
1−|z|2)

1
h−1

dzd̄zendowed with the inner

product〈 f ,g〉h = i
2

R
U f (z)g(z)

(
1−|z|2)

1
h−1

dzd̄z, 0 < h < 1, which generates a family of Hilbert

spaces with corresponding norms|| f ||h =
{

i
2

R
U | f (z)|2

(
1−|z|2)

1
h(−1)

dzd̄z
}1/2

. These spaces have

orthonormal basis given byϕn,h(z) =
{

1
π

Γ(h−1+n+1)
n!Γ(h−1)

}1/2
zn. SettingTϕ( f (z) = (PMϕ f )(z), where

Mϕ( f ) = ϕ f andP is the orthogonal projection on the subspace of holomorphic functions one gets
the corresponding Bergman kernelsKh(z,w) = 1

hπ
1

(1−zw̄)1+1/h then the algebras generated by the op-
eratorsTϕ form thequantum disc. Actually, these algebras coincide with the algebras generated by
the deformations[z, z̄] = h(I −zz̄)(I − z̄z) (see [6]). In general, the Berezin quantization of a sym-
pletic manifold(M,w) is given by a family of associative algebrasA = (Ah)h∈E , whereE denotes
the set of positive real numbers having 0 as a limit point, such that the correspondence principle
hold, that is, there is a family of involution preserving linear mappingsT(h) : C∞(M)→ Ah satisfy-

ing lim
h→0

∥∥∥ 1
ih

[
T(h)

ϕ ,T(h)
ψ

]
−T{ϕ,ψ}

∥∥∥ = 0, where{· , ·} is the Poisson bracket associated tow. Further,

the correspondence(M,w) Ã A must satisfy

(M1,w1) Ã A1

↓ ↓
(M2,w2) Ã A2

These properties hold in the special case of the quantum disc(see [6]). Berezin’s conceptual
treatment of quantization has been extended in many directions. Recently, Kontsevich proved
that every finite-dimensional Poisson manifold, that is, any manifoldM with a Poisson bracket on
C∞(M), always admits a deformation quantization. In the early eighties, by using his then new non-
commutative integration theory, A. Connes quantized the dynamics described by regular foliations
by establishing a correspondenceF Ã C∗(F ), between regular foliations andC∗-algebras. Soon
after, Sheu extended this construction to include singular foliations. Our purpose here is to show
that Sheu’s construction, may be used to produce a quantization of a Morse-Smale vector field
on a closed, that is, compact without boundary, orientable two-dimensional manifold satisfying
Berezin’s requirements. Here, by regular foliations is meant the ones that have leaves with the
same dimension, while singular foliations are the ones with leaves having different dimensions.

011 / 2



On the Quantum Disc and the Equivalence of Morse-Smale Systems Antonio R. da Silva

2. Connes’ foliation algebra and Sheu’s extension

We first recall Connes’ basic construction in a special case. Let be given the first-order system





dx
dt

= u

du
dt

= f (t,x,u)

By plotting its trajectories one gets a natural 1-dim foliation ofR3. Associated to this folia-
tion one has itsgraph Ω(F ) defined as the subset ofR6 consisting of points(t1,x1,u1, t2,x2,u2)
such that there is a trajectory through(t1,x1,u1) and(t2,x2,u2). This manifold carries a natural,
partially defined, group like structure (groupoid). It was precisely through this notion of groupoid
that Connes introduced a quantization process. By agroupoidG with basisB we understand a
setG endowed with mappingsr : G→ B, s: G→ B, calledtarget and source mapsand a par-
tially defined binary operation(x,y) 7→ xy such that: (i)xy is defined wheneverr(y) = s(x); (ii)
associativity holds; (iii) for eachx ∈ G there is a left neutral elementrx and a right neutral ele-
mentsx such thatrx ·x = x = x ·sx . Thus instead of the unity of the group we have theunit space
Go := {xx−1 : x ∈ G}. Groups are groupoids withGo = {e}. The mappingsr,s: G→ Go, with
r(x) = xx−1 ands(x) = x−1x are naturally associated toG and allow us to identifyB with Go. By
a topological groupoidwe mean a groupoidG endowed with a topology such that the multiplica-
tion and the inverse mappings, whenever defined, are continuous. Let us assume, at first, thatG is
locally compact, Hausdorff and that the topology onG is second countable. It is well-known that
in caseG is a group with a left Haar measuredx, L1(G,dx) can be made into a∗-Banach algebra
with multiplication( f ∗g)(x) =

R
f (y)g(y−1x)dyand the involution:f ∗(x) = f (x−1)∆(x)−1, where

∆ is the modular function ofG. ThegroupC∗-algebraC∗(G) is defined to be the completion of
L1(G) with respect to the norm|| f ||C∗ = sup{||π( f )|| : π is a unitary representation ofG}, where
π( f ) =

R
G f (x)π(x)dx and|| || is the operator norm for operators on the Hilbert space ofπ.

In a locally compact groupoid one does not have a Haar measure, so the above procedure
can not be used to construct aC∗-algebra out of it. Connes introduced the following substitute
for a Haar measure: Atransverse functionon a locally compact groupoid is a family of measures
{λx : x∈Go} such that: (i) the support ofλx is contained inGx := r−1(x); (ii) for each f ∈Cc(G)
the mappingλ( f ) : x→ R

f dλx is continuous; (iii) for eachγ ∈ Gy
x := r−1(y)∩ s−1(x) and each

f ∈Cc(G) holds
R

f (γγ′)dλx(γ′) =
R

f (γ′)dλy(γ′). The support of the mappingλ : Cc(G)→Cc(Go)
defined byλ( f )(x) =

R
f dλx is thesupport of the transverse function. The transverse function is

called aHaar systemwhen its support isGo. It does not have to exist in a general groupoid, and
even if it does, it is usually not unique. Given a foliated manifold(M,F ) theholonomy groupoid
or graphof (M,F ) is the groupoid withM as its sets of objects and with the setG of morphisms
defined by the properties: a. there is no morphismx→ y unlessx andy lie on the same leafL of
F ; b. the portionr−1(L) = s−1(L) of G over a leafL is a quotient of the fundamental groupoid
of L, and c. two homotopy classes[γ1], [γ2] of paths fromx to y in a leafL are identified inG iff
they have the sameholonomy, i.e., if following the normal structure ofF alongγ1 andγ2 yields the
same germ of a homeomorphism from a transverseq-disk atx to a transverseq-disk aty. One can
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give G a natural structure of a(2p+q)-manifold. If the leaves ofF are all simply connected, of
more generally, without holonomy, thenG reduces to the groupoid of an equivalence relationRon
M, R being the relation of “lying on the same leaf" as in case of the 1-dim foliation ofR3 given
previously. In general, given a locally compact groupoid with a Haar system(G,λ). We can define
a ∗-algebra structure ofCc(G), taking( f ∗g)(γ) =

R
f (γ′)g(γ′−1γ)dλs(γ)(γ′); and f ∗(γ) = f (γ−1).

TheC∗-algebra envelope of this∗-algebra is theC∗-algebra of the groupoidG. We define groupoid
equivalence the following way: LetG be a groupoid. Consider a fiber bundle with base spaceGo,
total spaceZ and projectionπ. Givenx,y∈ Go, eachγ ∈ Gy

x = r−1(y)∩s−1(x) induce a bijection:
Lγ : π−1(x)→ π−1(y) which satisfies:Lγγ′ = Lγ ◦Lγ′ . A pair (γ,z) is saidcompatibleif π(z) = s(γ)
and theproductof γ by z is defined byγ ·z= Lγ(z). The set of compatible pairs is denoted byG∗Z.
If π is open and continuous, and the product mapG∗Z⊂G×Z→ Z is continuous thenZ is called
a left G-space. Similarly one definesright G-spaces. Given two groupoidsG andG′ we define a
(G,G′)-spaceas a topological spaceZ that satisfies: (i)Z is a leftG-space; (ii)Z is rightG′-space;
(iii) the actions ofG andG′ on Z commute. We say that two groupoidsG andG′ areequivalent
whenever there is a(G,G′)-space such that: (i) ifπ(z′) = π(z) then there is a uniqueγ ∈ G such
thatz′ = γz. (ii) if π′(z′) = π′(z) then there is a uniqueγ′ ∈G′ and thatz′ = zγ′.

3. C∗-algebras equivalence and the main result

Let A be aC∗-algebra andX be a (right)A-module. We define a (right) inner product inX as the
mapping 〈·, ·〉A : X × X → A such that (i) 〈x,λy + µz〉A = λ〈x,y〉A + µ〈x,z〉A ;
(ii) 〈x,y·a〉A = 〈x,y〉A ·a; (iii) 〈x,y〉∗A = 〈y,x〉A ; (iv) 〈x,x〉A ∈ A+; (v) 〈x,x〉= 0⇒ x = 0. Further,
||x||A := ||〈x,x〉A||1/2.

By an A-Hilbert moduleX we mean anA-module with inner product that is complete with
respect to|| · ||A . We sayX is saturatedwheneverI := span{(〈x,y〉A;x,y∈ X} is dense inA. Now,
let A andB beC∗-algebras. AsA−B imprimitive bimoduleX is anA−B module such that: (i)X is
saturated leftA (resp. rightB)-Hilbert module; (ii) 〈a·x,y〉B = 〈x,a∗y〉B andA〈x·b,y〉=A 〈x,y·b∗〉;
(iii) A〈x,y·z〉= x · 〈y,z〉B .

TwoC∗-algebrasA andB are then saidMorita equivalentif there exists anA−B imprimitivity
bimodule that implements the equivalence betweenA andB.

Now let (V,F ) be asingular foliation and the subsetsF in F leaves. An s-densityon an
n-dimensional vector spaceV overR is a mapα : ΛnV∗ ∼ {0} → C such that for any non-zero
c∈ R and non-zeroz∈ ΛnV∗, we haveα(cz) = |c|sα(z). Let ΩsV be the set ofs-densities onV;
Ωs(V)Ωt(V) ⊂ Ωs+t(V); Ω∗V is a vector space overC under pointwise operations;ΩsV is one-
dimensional: Fix a non-zeroω ∈ ΛnV andλ ∈ C. Let {ei} be a basis forV with dual basis{e∗i }.
Then forc∈ R∼ {0}, defineα by: α(ce∗1∧ ·· ·∧e∗n) = λ|ω| |(ce∗1, . . . ,e

∗
n)|s we writeα = λ|ω|s. A

s-densityα is said to be positive ifα(ω)≥ 0, ∀ω.
Let (V,F ) be a singular foliation andG be its holonomy groupoid. LetVm be the union of

leaves of dimensionm. Then onVm we have a smooth positive half line bundle,|ΛmF |, the bundle
of one-densities along the leaves inVm . By fixing a smooth sectionµm of |ΛmF |, the union of the
half line bundles|ΛmF | becomes a trivial half line bundle|ΛF | overV. Let s andt be the source
and target maps defined onG . For anyp ∈ G we can find neighborhoodsU andW of s(p) and
t(p) respectively such thatp is an one-to-one correspondence between the leaf spacesU/U ∩F
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andW/W∩F . We defineG(U, p,W) to be the subset{(x,y) | x∈U,y∈W and p([x]) = [y]} of
U ×W. Then suchG(U, p,W)’s form a fundamental system of open sets ofG . Now we construct
the foliation algebra ofF in the following way. LetG(U, p,W)m = G(U, p,W)∩ s−1(Vm) (union
of leaves of dimensionm).

DefineΛ(U, p,W) to be the set of bounded complex valued functionsξ onG(U, p,W) satisfy-
ing the following conditions: (1)ξ is continuous on eachG(U, p,W)m . (2) the closure ofsupp(ξ)
in G(U, p,W) is compact; (3) under convolution with respect to the fixed measureµ, ξ, ξ′ preserve
continuous functions onV, i.e.,ξ ∗ f ∈C(V), ∀ f ∈C(V) andξ∗ ∗g∈C(V), ∀g∈C(V) where
ξ∗(x,y) := ξ(y,x); (4) ||ξ||1 < ∞, where||ξ||1 = max{R x |ξ(x,y)|µ(x),

R y |ξ(x,y)|µ(y)}x∈U,y∈W . Let
A(G ,µ) be the linear span of elements in suchΛ(U, p,W)’s. A(G ,µ) is an involutive alge-
bra normed by||ξ||1 := max

(R
t(p)=y |ξ(p)|(xs(µ))(p),

R
s(p)=x |ξ(p)|(t∗(µ))(p)

)
. For each leafF ,

the left convolution (with respect toµ) gives rise to a regular representationπF of A(G ,µ) on
the Hilbert spaceL2(F,µ) of µ-square integrable functions onF , ||πF(ξ)|| ≤ ||ξ||1 . The algebra
A(G ,µ) normed by||ξ||= sup

F∈F
||πF(ξ)|| is a pre-C∗-algebra whose completionC∗(F,F ,µ) is called

a (reduced)foliation C∗-algebra of(V,F ).

We recall that given a vector fieldX on a manifoldM, that isX : M → TM, whereTM is the
tangent bundle overM. The integral curves of the systeṁx(t) = X(x(t)), x(0) = p define a flow
Ft(p) = F (t, p). Taking p ∈ M the orbit through p is defined byO(p) = {Ft(p) ∈ M : t ∈ I}.
Now given two vector fieldsX andY on M with corresponding flowsF andG , respectively, we
sayX andY are topologically equivalentwhenever there is an homeomorphismh: M → M that
maps orbits ofX into orbits ofY preserving their orientation. Further, we say thatX ∈ Xr(M) is
structurally stablewhenever there is a neighborhoodV of X in X(M) such that every vector field
Y ∈ V is topologically equivalent toX. In other words, the topological behaviour of the orbits
of X does not change under small perturbations. Suppose now thatM is a 2-dimensional closed
manifold. ThenX ∈ Xr(M) is calledMorse-Smaleif: (a) the vector fieldX has a finite number of
hyperbolic singular points and a finite number of hyperbolic periodic trajectories; (b) there is no
saddle connection, that is, no separatrix joining one saddle to another or to itself; (c) any orbit has
a uniqueα-limit as well as a uniqueω-limit.

Morse-Smale vector fields on compact two-dimensional manifolds were proved to be abundant
and were classified through important contributions due to Peixoto (for a modern approach, using
the technique of atoms and molecules, see [2]). Among his results he proved that:For a closed ori-
entable 2-manifold one has: (i) a vector fieldX ∈Xr is structurally stable iff it is Morse-Smale; (ii)
the setΣ of all Morse-Smale vector fields is open and dense in the spaceXr ; (iii) two distinguished
graphs correspond to equivalent flows iff they are isomorphic.

Our main result reads:

Theorem If X andY are topologically equivalent Morse-Smale vector fields on a closed ori-
entable 2-manifoldM. Then the associatedC∗-algebrasC∗(Fi) are equivalent asC∗-algebras, that
is, they are Morita equivalent.

The steps of the proof consists of showing that the foliations associated to the equivalent
Morse-Smale vector fieldsX andY are equivalent. Further, since such foliations are (étale) (see
[5]) their holonomy groupoids are equivalent as groupoids. On the other hand, a result of Muhly,
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Renault and Williams (see [7]) show that theC∗-algebras associated to equivalent groupoids must
be Morita equivalent. The above result shows that Connes’quantization of a Morse-Smale vector
field satisfies Berezin’s requirement of equivalence preservation.
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