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On the Quantum Disc and the Equivalence of Morse-Smale Systems Antonio R. da Silva

1. Introduction and Berezin’s concept of quantization

According to Berezin [1] a mathematical quantization of a sympletic manifold should be a
family of associative algebras with involution satisfying certain properties. Among these prop-
erties is a functorial one, that says that equivalence should be preserved under quantization. A
typical example is Berezin's quantum disc, where gitkemnit disc in complex plane, with its
canonical sympletic formw = 'é (1- |z|2) ~2dzdzand the corresponding Poisson bracketg} =
i(l— |z\2)2(afgg — 5fag). One builds a quantization &f by considering the family of all square
integrable functions with respect to the measungs- 5 (1|22 " dzdzendowed with the inner

R — 1

product(f,g)n =35 , f(2)9(2)(1— ]z|2)% Ydzdz, 0< h< 1, which generates a family of Hilbert
R 1 1/2

spaces with corresponding norig||, = {lz ulf@)P(1-12?) A dzdz_} . These spaces have

_ 1/2
orthonormal basis given b h(z) = {l w} Z". SettingTy(f(2) = (PMy f)(z), where

m nif(h-1)
My (f) =¢ f andP is the orthogonal projection on the subspace of holomorphic functions one gets
the corresponding Bergman kernilgz, w) = = ——2L__- then the algebras generated by the op-

— hn (1_2\,\—,)1+1/h
eratorsTy form thequantum discActually, these algebras coincide with the algebras generated by

the deformations$z, 7] = h(l — zz)(I — z2) (see [6]). In general, the Berezin quantization of a sym-
pletic manifold(M,w) is given by a family of associative algebrds= (An)nce , WhereE denotes

the set of positive real numbers having 0 as a limit point, such that the correspondence principle
hold, that is, there is a family of involution preserving linear mappifgs: C*(M) — A, satisfy-

ing rI]iLnOH% [Tq,(h), lﬁh)] _T{‘W}H =0, where{-, -} is the Poisson bracket associateavtd-urther,

the correspondend®, w) ~~ 4 must satisfy

(M1,wy) ~ 4

! !
(M2,Wo) ~» A

These properties hold in the special case of the quantum disc(see [6]). Berezin's conceptual
treatment of quantization has been extended in many directions. Recently, Kontsevich proved
that every finite-dimensional Poisson manifold, that is, any manNbidith a Poisson bracket on
C*(M), always admits a deformation quantization. In the early eighties, by using his then new non-
commutative integration theory, A. Connes quantized the dynamics described by regular foliations
by establishing a correspondenge-~ C*(¥), between regular foliations ar@f-algebras. Soon
after, Sheu extended this construction to include singular foliations. Our purpose here is to show
that Sheu’s construction, may be used to produce a quantization of a Morse-Smale vector field
on a closed, that is, compact without boundary, orientable two-dimensional manifold satisfying
Berezin's requirements. Here, by regular foliations is meant the ones that have leaves with the
same dimension, while singular foliations are the ones with leaves having different dimensions.
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2. Connes’ foliation algebra and Sheu’s extension

We first recall Connes’ basic construction in a special case. Let be given the first-order system

dt

du

— = f(t

g = ftxuw

By plotting its trajectories one gets a natural 1-dim foliatiorR3f Associated to this folia-
tion one has itgraph Q(¥) defined as the subset B consisting of pointst;, Xy, g, tz, X2, Up)
such that there is a trajectory through, x;,u1) and (t2,X2,u2). This manifold carries a natural,
partially defined, group like structurgroupoid. It was precisely through this notion of groupoid
that Connes introduced a quantization process. ByoapoidG with basisB we understand a
setG endowed with mappings: G — B, s: G — B, calledtarget and source mapsnd a par-
tially defined binary operatio(x,y) — xy such that: (i)xy is defined whenever(y) = s(x); (ii)
associativity holds; (iii) for eaclt € G there is a left neutral element and a right neutral ele-
ments, such that - x = X = X- . Thus instead of the unity of the group we have tiné space
G° = {xx!:x<c G}. Groups are groupoids witB° = {e}. The mappings,s: G — G°, with
r(x) = xx ! ands(x) = x_1x are naturally associated @and allow us to identifyB with G°. By
atopological groupoidwe mean a groupoi@ endowed with a topology such that the multiplica-
tion and the inverse mappings, whenever defined, are continuous. Let us assume, at f@sg that
locally compact, Hausdorff and that the topology®iis second countable. It is well-known that
in caseG is a group with a IeftRHaar measude, L(G,dx) can be made into a&Banach algebra
with multiplication(f xg)(x) = f(y)g(y*x)dyand the involution:f*(x) = f(x~1)A(x)~%, where
A is the modular function o6. ThegroupC*-algebraC*(G) is defined to be the completion of
LY(G) v&ith respect to the normi f||c- = sup{||m(f)|| : Ttis a unitary representation &}, where
m(f) = g f(x)T(x)dxand|| || is the operator norm for operators on the Hilbert space of

In a locally compact groupoid one does not have a Haar measure, so the above procedure
can not be used to construcCd-algebra out of it. Connes introduced the following substitute
for a Haar measure: &ansverse functioon a locally compact groupoid is a family of measures
{N:x e G°} such that: ng) the support o is contained irG* :=r~1(x); (ii) for eachf € C.(G)
the mapping\(f): x —  fd\* is_continuous; (iii) for eacly € G} :=r~%(y) ns1(x) and each
f € C¢(G) holds f(y}{)d)\x(\/) = f(y)dN(Y). The support of the mapping C¢(G) — C¢(G°)
defined byA(f)(x) = fdA* is thesupport of the transverse functiofihe transverse function is
called aHaar systenwhen its support i$°. It does not have to exist in a general groupoid, and
even if it does, it is usually not unique. Given a foliated manifgitl ) the holonomy groupoid
or graphof (M, 7) is the groupoid withM as its sets of objects and with the &bf morphisms
defined by the properties: a. there is no morphism y unlessx andy lie on the same ledf of
¥F; b. the portionr=1(L) = s7%(L) of G over a leafL is a quotient of the fundamental groupoid
of L, and c. two homotopy classég], [yz] of paths fromx toy in a leafL are identified inG iff
they have the samwlonomyi.e., if following the normal structure gf alongy; andy. yields the
same germ of a homeomorphism from a transverdisk atx to a transversg-disk aty. One can
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give G a natural structure of &p+ g)-manifold. If the leaves off are all simply connected, of
more generally, without holonomy, th&reduces to the groupoid of an equivalence relakam
M, Rbeing the relation of “lying on the same leaf" as in case of the 1-dim foliatidR3agiven
previously. In general, given a locally compact %roupoid with a Haar sy8&w). We can define
a*-algebra structure oE.(G), taking (f xg)(y) = f(y)g(y ty)dAs¥(y); and f*(y) = f(y-1).
TheC*-algebra envelope of thisalgebra is th€*-algebra of the groupoid. We define groupoid
equivalence the following way: L& be a groupoid. Consider a fiber bundle with base s@&ce
total spaceZ and projectiorrt. Givenx,y € G°, eachy € G = r~1(y) Nns~1(x) induce a bijection:
Ly: 1(x) — 1 (y) which satisfiesL,, = LyoLy . A pair (y,2) is saidcompatibleif 1(z) = s(y)
and theproductof y by zis defined byy-z=Ly(z). The set of compatible pairs is denoted®y Z.
If Ttis open and continuous, and the product réayZ C G x Z — Z is continuous the# is called
aleft G-space Similarly one definesight G-spaces Given two groupoid$ andG’ we define a
(G,G')-spaceas a topological spacethat satisfies: (i) is a leftG-space; (i) Z is right G'-space;
(iii) the actions ofG andG’ on Z commute. We say that two groupoi@sandG’ areequivalent
whenever there is &5, G')-space such that: (i) ifi(Z) = 1(z) then there is a uniquge G such
thatZ = yz (ii) if W(Z) = 1(2) then there is a uniqug¢ € G’ and thatz = zy'.

3. C*-algebras equivalence and the main result

Let Abe aC*-algebra an be a (right)A-module. We define a (right) inner product{ras the
mapping (-,)a: X x X — A such that (i) XAy + 2a = AXY)a + WX 2DA;
(i) (xy-aya= XY)a-& (i) XY)a=¥X)a;(v) X,x)a€A"; (V) (x,Xx) =0=-x=0. Further,
X1 2= 1 X)all 72

By an A-Hilbert moduleX we mean amA-module with inner product that is complete with
respect td| - ||a. We sayX is saturatedwhenevel := spar{({X,y)a; X,y € X} is dense irA. Now,
let AandB beC*-algebras. A®\— B imprimitive bimoduleX is anA— B module such that: (iX is
saturated leff (resp. rightB)-Hilbert module; (ii) (a-x,y)s = (X,a*y)g anda(x-b,y) =a (X,y-b*);
(ii)) a(xy-2)=x(y.2)e.

Two C*-algebrasA andB are then saidllorita equivalentf there exists am\ — B imprimitivity
bimodule that implements the equivalence betw&amdB.

Now let (V, ) be asingular foliationand the subsets in F leaves An s-densityon an
n-dimensional vector spadé overR is a mapa: A"V* ~ {0} — C such that for any non-zero
c € R and non-zera € A"V*, we havea(cz) = [c[°a(z). Let Q% be the set ob-densities orV;
QS(V)QY(V) c Q%(V); Q*V is a vector space ovél under pointwise operation§®V is one-
dimensional: Fix a non-zer@ € A"V andA € C. Let{e} be a basis fo¥ with dual basis{&'}.
Then forc € R ~ {0}, definea by: a(ce; A--- A€,) = Aw||(cs,...,&))|° we writea = A|w|°. A
s-densitya is said to be positive ifi(w) >0, Vw.

Let (V, F) be a singular foliation and; be its holonomy groupoid. Léty, be the union of
leaves of dimensiom. Then onV;,, we have a smooth positive half line bund&™ ¥ |, the bundle
of one-densities along the leavesyy. By fixing a smooth sectiopy, of |[A™F |, the union of the
half line bundlegA™ ¥ | becomes a trivial half line bund|& 7 | overV. Letsandt be the source
and target maps defined @p For anyp € G we can find neighborhoodd$ andW of s(p) and
t(p) respectively such that is an one-to-one correspondence between the leaf spgtés) F
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andW/Wn F. We defineG(U, p,W) to be the subsef(x,y) | xe U,y € W and p([X]) = [y]} of
U xW. Then suctG(U, p,W)’s form a fundamental system of open setsofNow we construct
the foliation algebra off in the following way. LetG(U, p,W)m = G(U, p,W)Ns~(Vy) (union
of leaves of dimensiom).

DefineA(U, p,W) to be the set of bounded complex valued functi®os G(U, p,W) satisfy-
ing the following conditions: (1} is continuous on eadB(U, p,W)n,. (2) the closure oSupf§)
in G(U, p,W) is compact; (3) under convolution with respect to the fixed megswet’ preserve
continuous functions oW, i.e.,§x f € C(V), Vf ¢ g(V) and&* x g C(V), VgeC(V) where
&5 (x,Y) = &(y,%); (4) [|€][1 < o0, where]|€][s = max{ *[E(x,y)[H(X), *[E(%Y)|H(Y)}xeu yew - Let
A(G,n) be the linear span Qf elements in su{st‘U,Ro,W)’s. A4(G,p) is an involutive alge-
bra normed by[€||1 := max("p_, [E(P) (M) (P), p—x [EPIE(W)(P)). For each leaf,
the left convolution (with respect tp) gives rise to a regular representatiop of 4(G, ) on
the Hilbert spacé.?(F, ) of u-square integrable functions ¢n ||&(£)|| < ||€||1. The algebra
A(G,n) normed by |§|| = sup||Te(&)|| is a pre€*-algebra whose completidf (F, F, ) is called

FeF

a (reducedjoliation C*-algebra of(V, F).

We recall that given a vector field on a manifoldM, that isX: M — TM, whereT M is the
tangent bundle ovavl. The integral curves of the systexft) = X(x(t)), x(0) = p define a flow
F(p) = F(t,p). Taking p € M the orbit through p is defined byO(p) = {#(p) e M:t € 1}.
Now given two vector fieldX andY on M with corresponding flowg and G, respectively, we
sayX andY aretopologically equivalentvhenever there is an homeomorphiemM — M that
maps orbits oiX into orbits ofY preserving their orientation. Further, we say tKat X" (M) is
structurally stablewhenever there is a neighborho@dof X in X(M) such that every vector field
Y € vV is topologically equivalent tX. In other words, the topological behaviour of the orbits
of X does not change under small perturbations. Suppose nowltiga 2-dimensional closed
manifold. ThenX € X"(M) is calledMorse-Smaléf: (a) the vector fieldX has a finite number of
hyperbolic singular points and a finite number of hyperbolic periodic trajectories; (b) there is no
saddle connection, that is, no separatrix joining one saddle to another or to itself; (c) any orbit has
a uniquea-limit as well as a uniquev-limit.

Morse-Smale vector fields on compact two-dimensional manifolds were proved to be abundant
and were classified through important contributions due to Peixoto (for a modern approach, using
the technique of atoms and molecules, see [2]). Among his results he provdebitetlosed ori-
entable 2-manifold one has: (i) a vector fiedde X" is structurally stable iff it is Morse-Smale; (ii)
the set of all Morse-Smale vector fields is open and dense in the spadéi) two distinguished
graphs correspond to equivalent flows iff they are isomorphic

Our main result reads:

Theorem If X andY are topologically equivalent Morse-Smale vector fields on a closed ori-
entable 2-manifoldM. Then the associatet-algebrasC* (%) are equivalent a€*-algebras, that
is, they are Morita equivalent

The steps of the proof consists of showing that the foliations associated to the equivalent
Morse-Smale vector field& andY are equivalent. Further, since such foliations &l@ (see
[5]) their holonomy groupoids are equivalent as groupoids. On the other hand, a result of Muhly,
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Renault and Williams (see [7]) show that iG&-algebras associated to equivalent groupoids must
be Morita equivalent. The above result shows that Connes’quantization of a Morse-Smale vector
field satisfies Berezin’s requirement of equivalence preservation.
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