PROCEEDINGS

OF SCIENCE

Scalar and Vector Massive Fields in Lyra’s Manifold

R. Casana, C. A. M. de Melo *and B. M. Pimentel

Instituto de Fisica Tedrica, Universidade Estadual Paulista
Rua Pamplona 145, CEP 01405-900, S&o Paulo, SP, Brazil

E-mail: casana@ift.unesp.br ,)cassius@ift.unesp.br !
pimentel@ift.unesp.br

The problem of coupling between spin and torsion is analysed from a Lyra’s manifold background
for scalar and vector massive fields using the Duffin-Kemmer-Petiau (DKP) theory. We found the
propagation of the torsion is dynamical, and the minimal coupling of DKP field corresponds to a
non-minimal coupling in the standard Klein-Gordon-Fock and Proca approaches. The origin of
this difference in the couplings is discussed in terms of equivalence by surface terms.

Fourth International Winter Conference on Mathematical Methods in Physics
09 - 13 August 2004
Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, Brazil

*Speaker.

Published by SISSA http://pos.sissa.it/


mailto:casana@ift.unesp.br�
mailto:cassius@ift.unesp.br�
mailto:pimentel@ift.unesp.br�

Scalar and Vector Massive Fields in Lyra’s Manifold C. A. M. de Melo

1. Introduction

After Einstein’s approach to gravitation, several others theories have been developed, as part
of efforts to cure problems arising when the gravitational field is coupled to matter fields. In
particular, the problem of spin coupling to gravitation has a central role in some recent years.
The principal path to incorporate spin in geometrical theories of gravitation is the use of so called
Riemann-Cartan geometry. This geometry has a nonsymmetric connection, in such a way that a
new geometrical concept enters in scene: the torsion. However, analysing the Cauchy data, one
can proof the torsion is a nonpropagating entity and therefore must be different of zero only in the
interior of matter.

As soon as Einstein presented the General Relativity, Viidydroposed a new geometry in
which a new scalar field accompany the metric field and change the scale of length measurements.
The aim was to unify gravitation and electromagnetism, but this theory was briefly refuted by
Einstein because the nonmetricity had direct consequences over the spectral lines of elements which
never has been observed.

After some more years, Lyr@] has proposed a new geometry, with scalar field for scale
changes, that respect the metricity condition. This theory was developed by S@jeiber B]
and several others as an alternative to describe the gravitational field, and more recently has been
applied to study viscous!] and higher dimensionab] cosmological models, domain wall§][
and several others applications. In context of spin-gravitational coupling, the importance of Lyra’s
geometry resides in the fact that the torsion is propagating.

On the other hand, to study the behaviour of scalar and vector massive fields in non-euclidean
manifolds is extremely important in the context of astroparticle physics and unified theories since a
great part of our knowledge about cosmological data and fundamental interactions is described by
this type of field. A profitable manner of describing these fields is to use the Duffin-Kemmer-Petiau
(DKP) theory. In DKP theory, both particles are described by only one field with a linear first order
differential equation, very similar to Dirac equation. This similarity can be employed to facilitate
the study of interactions between several fields, just as in General RelefivBdnd Einstein-
Cartan spacetime8,10]. However, in the last case is found that DKP theory is not equivalent to the
correspondent Klein-Gordon-Fock (KGF) and Proca Lagrangians. Notwithstanding, the Harisch-
Chandra theory for massless DKP field] was extended to Riemann-Cartan manifold in such a
way that a complete equivalence with KGF and Maxwell theories can be pragedTherefore,
the equivalence between DKP and the more usual theories is not trivial, and the question of what
is the most fundamental theory arises. Evidently, only a very accurate experiment could decide.

Here, we propose look for coupling of spin 0 and 1 massive fields and torsion in Lyra manifold
via DKP formalism. A good introduction to DKP theory can be foundlig, [14]. In section2 we
present the essential elements of Lyra geometry, and in the subsequent sections the coupling of
DKP field with curvature and torsion in this manifold as well as a comparison between the results
of the more usual KGF and Proca formalisms. Finally, in the last section we make some comments
on the results.
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2. The Lyra geometry

The Lyra manifold2] is defined given a tensor metig, and a positive definite scalar function
@which we call the scale function. In Lyra geometry, one can change scale and coordinate system
in an independent way, to compose what is calleeference systemmansformation: leM C RN
andU an open ball irR", (N > n) and letx : U ~ M. The pair(x,U) defines acoordinate system
Now, we define a reference system(yyU, ) whereg transforms like

9(X) = B(x(): 9(x(X)) g‘(‘;#o (2.1)

under a reference system transformation.
In the Lyra’s manifold, vectors transform as

AV — (BEAH

= 0o (2.2)

In this geometry, the metric connection is

~ 1 o 1 ] 1
M = ?Prpw * ® [6?16\} n (%) ~Gwg™ln (%)] M= Egpc (0u9vo + 0vGop — oGy
(2.3)
whose transformation law is given by
s Oy OPOROE 106 O 1,0 (0
M= cpr M350 Ot oxY (@ 0XC OXHOX * cpé" " ) (2.4)
One can define the covariant derivative for a vector field as
WA = L AL FY AT LA, = Sa.A,— O 25
e :Fpu + Ho 9 HV:ZPLIV_ HVAG ()
The richness of the Lyra’s geometry is demonstrated bygtieature[3]
~ FP
5 1 (0(9 %) 0((p|'[30> O TN
R‘E%otoE E ( P o +CPI_[3)\(pra0_(“_a)\(ﬂ_Bo (2.6)
and thetorsion[15]
~ ~ ~ 1
T P=TPy TPy — 0 (8h0y — 80oy) Ing (2.7)
where the second term is the anholonomic contribution, thus, we get
~ p 1 p p - ~ o~ p 3 -
T’ = 0 (8hoy — oy Ine, T=T," = Zpauln Q. (2.8)
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3. The massive DKP field in Lyra manifold

In Minkowski space—time the massive DKP theory is given by the following Lagrangian den-
sity

£ = SO0~ S0BE Py, @D
where = y™n%, n®=2 ([30)2 — 1, and the? are matrices satisfying the massless DKP algebra
B*B°B°+ B°B°B* = B+ B°n. (3.2)
The resulting equation of motion for the DKP fialdis
iB20,W — my =0. (3.3)

The above equations can be generalized to Lyra space-2Jnie through the formalism of
tetrads (or vierbeing together theminimal coupling procedur§l6, 17]. Here we shall simply
guote the main results we need. For details, in Riemann and Riemann—Cartan manifolds, we refer
respectively to7,/8] and [9,/10,/12] and references therein.

We consider a Lyra space-tiniewith metricg,,, whose point coordinates are labelléd To
each point irL. we attach a Minkowski space-tini with metricnap, Wwhose point coordinates are
labelledx®. The DKP fieldsy areLorentz grouprepresentations in Minkowski space-time. The
projections intdL of all tensor quantities defined & are donevia the tetrad field&",(x) :

gw(X) =nagl¥elx), e’L=25, e=det(gd) =g, (3.4)

whereg = det(g,y).
The resulting action for massive DKP fields minimally coupled to Lyra’s manifold is

Z . .
Skp=  d'xgle ('zwsae“ampw — 5 OBy mfmu) , (3.5)

wherel[],, is the Lyra covariant derivative associated to the affine conneﬁmn
The covariant derivatives of DKP fields are

1 1 1 1
O = (*paullJ + é%absabw ST 631@— éwuabqjsaba

whereS® = |83, 8°] andwyap is the spin connection.
The Euler-Lagrange equation for thiefield is

ik (Du+;fu> Yg—myp=0 (3.6)

where we have used the metricity conditiohe,® = $0u€,% — a6+ wabg,° = 0.

1We choose a representation in thth =pO, BiT =-p.
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3.1 The scalar sector

In Minkowski space—time, the “projector§’ andP? select the spin 0 sector of the theory (see
[13,17]) such thatPy is a scalar an@2y is a vector field. Thus, from these projectors defineldlin
we can construct the projectors in Lyra manifoldRis= e*,P? = e*,Pp2 = P@H.

From the definitions above and the propertiePadind P? it is easy to verify thaP"p’ =
PgV, PSY =0, and it can also be seen tHeidl,p = O, (PY) andP’ O = O, (PYY) due to the
metricity condition. Therefore, under general coordinate transformatfynss a scalar ané®’ )
is a vector.

By applying the projector® andP* to the equation3.€), we get respectively,

mPy =i <Du+ ;Tp> Phy, mPYy =i (D“+ ;T“) Py (3.7)

by mixing both equation, we obtain the equation of motion for the s&ajlaM/e choose a represen-
tation where DKP field is a 5-vector column suchlas: (¢, °, ¢, w2, ¢3)T, Py = (¢,0,0,0,0)"
andP3y = (2,0,0,0,0)T. Thus, we have

<Du+;fp> (D“Jr;f”) d+mPp=0 (3.8)

As we can see above, the interaction with torsion does not disappear, even after we selected the
spin 0 sector of the DKP field. This interaction is present both in the connd%;‘(j,gmsed in the
calculation of the covariant derivativg, and in the explicit presence of terms containing the trace
torsionT, in the equation above.
On the other hand, when the Lyra geometry is minimally coupled to the massive Klein-

Gordon-Fock field, we get

z

Sc=  d%q'y/=g (0 0M —nPo0) , (3.9)

where the covariant derivative of the KGF scalar reldg = éauq).
The KGF action/8.9) results in the following equation of motion

(Op+ Ty 0¥ + P = 0, (3.10)

We can see that there exist interaction with the trace torsion. It is a different situation to what
happened in Riemann-Cartan spacetime where the scalar field does not couple with B)rsion |
However, the spin 0 DKP equatio8.6) is different of KGF equatiorid,10).

The difference will be better understood if we project the DKP aciBof) to its spin 0 sector.
Thus, by using the equatioB.) to relate the vectap* to the scala, and after some integration
by parts and a rescaling— /m¢, the DKP action3.5) reads as

Z
Sero— Aty G (D4 -G 000 PR00). (3D

from this action we can obtain the spin 0 DKP equation give3i€)( And it has two non minimal
coupling which do not appear in the KGF actidg).

013/5



Scalar and Vector Massive Fields in Lyra’s Manifold C. A. M. de Melo

3.2 The vectorial sector

Now we use the Umezawa’s “projector®* andR" in order to analyze the spihsector of
the theory. We remember thRt'y = Y* is a vector andR( = Q" is a second rank antisym-
metric tensor in a Lyra sense. Applying these operators on the equation of n@&pmweé get,
respectively,

myH =i <D[3 + ;fg> lIJ“B7 qu“B =i <|:|a + ;fu> (qul]Ju— g““lp[3> (3.12)
by mixing both equations, we found the equation of motion for the vector(iéld

1. 1.
<DB+ZTB> <Da+2ra> (g“Bw“—g““tb“) +mPYt =0 (3.13)
We project the massive DKP actic8.§) to its spin 1 sector. Then, by using the equati8rig)
which relates the tensor fielpt to the vectorp* and, after some integration by parts and a rescal-
ing y* — /myH the DKP action'8.5) becomes

Z
Skpr = d*xgle <_2(p2 FH £+ mPgH — &0 (fVey + fuz) — Ezwzm (3.14)
1

« 1. 2
_%(f WSHVJFS*quv)—g(Z “vSrN+Sk”VZMV)—9Sk”VSJV>

where
1. - 3

Otherwise, the Proca’s lagrangian in Minkowski space—time is given by

1

Lor=—7 (9aAy— 96A3) (aaAb . abAa) +TPALAR (3.16)

By making the minimal coupling procedure to the Lyra spacetime, we get

z

1 1 2

Sr= d*g'e (—MF“VFJV +MPAAR -+ 30 (FWZy +Fp2?) — §zwz;;v+ (3.17)
1 2 2
"3 (F*™ 8w +S*WFw) + 9 (e +STEw) - 98*“"5‘1\,)

4. Comments

A simple comparison between the Lagrangians and equations of motion shows us the unequiv-
alence of DKP theory with KGF and Proca descriptions of scalar and vector massive particles.
However, a more accurated inspection reveals the spin 0 case as a problem of nonminimal cou-
pling. In the spin 1 case the situation is more complicated, because all terms in DKP Lagrangian
are also present in the Proca, but with modified coupling constants.

Now, from (3.14) we can see that

Z
Sk = d'x —% (0w — o) (9°4P — 3°y?) +m2w;wa} — Sk (A1)
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by the prescription
1
One can see that the prescriptiah2) only changes the strength of the coupling with respect

the usual minimal coupling procedure. It can be explicitly observed by analysing the proportion
between the coefficients of the interactions in the act%p@,l (3.19 and S5y (3.19).

In our future perspectives we will do a study of the relationship between Lyra geometry and
gauge theories, which is now in course using the Utiyama general theory. At same time, the cou-
pling of Dirac field with this manifold is in preparation. We hope that these studies can clarify if
the nonequivalence is restricted to manifolds with torsaod curvature, or if it is related to the
structure of the field theory used to describe the particles.
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