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1. Introduction

After Einstein’s approach to gravitation, several others theories have been developed, as part
of efforts to cure problems arising when the gravitational field is coupled to matter fields. In
particular, the problem of spin coupling to gravitation has a central role in some recent years.
The principal path to incorporate spin in geometrical theories of gravitation is the use of so called
Riemann-Cartan geometry. This geometry has a nonsymmetric connection, in such a way that a
new geometrical concept enters in scene: the torsion. However, analysing the Cauchy data, one
can proof the torsion is a nonpropagating entity and therefore must be different of zero only in the
interior of matter.

As soon as Einstein presented the General Relativity, Weyl [1] proposed a new geometry in
which a new scalar field accompany the metric field and change the scale of length measurements.
The aim was to unify gravitation and electromagnetism, but this theory was briefly refuted by
Einstein because the nonmetricity had direct consequences over the spectral lines of elements which
never has been observed.

After some more years, Lyra [2] has proposed a new geometry, with scalar field for scale
changes, that respect the metricity condition. This theory was developed by Scheibe [2], Sen [3]
and several others as an alternative to describe the gravitational field, and more recently has been
applied to study viscous [4] and higher dimensional [5] cosmological models, domain walls [6],
and several others applications. In context of spin-gravitational coupling, the importance of Lyra’s
geometry resides in the fact that the torsion is propagating.

On the other hand, to study the behaviour of scalar and vector massive fields in non-euclidean
manifolds is extremely important in the context of astroparticle physics and unified theories since a
great part of our knowledge about cosmological data and fundamental interactions is described by
this type of field. A profitable manner of describing these fields is to use the Duffin-Kemmer-Petiau
(DKP) theory. In DKP theory, both particles are described by only one field with a linear first order
differential equation, very similar to Dirac equation. This similarity can be employed to facilitate
the study of interactions between several fields, just as in General Relativity [7, 8] and Einstein-
Cartan spacetimes [9, 10]. However, in the last case is found that DKP theory is not equivalent to the
correspondent Klein-Gordon-Fock (KGF) and Proca Lagrangians. Notwithstanding, the Harisch-
Chandra theory for massless DKP field [11] was extended to Riemann-Cartan manifold in such a
way that a complete equivalence with KGF and Maxwell theories can be proved [12]. Therefore,
the equivalence between DKP and the more usual theories is not trivial, and the question of what
is the most fundamental theory arises. Evidently, only a very accurate experiment could decide.

Here, we propose look for coupling of spin 0 and 1 massive fields and torsion in Lyra manifold
via DKP formalism. A good introduction to DKP theory can be found in [13, 14]. In section2 we
present the essential elements of Lyra geometry, and in the subsequent sections the coupling of
DKP field with curvature and torsion in this manifold as well as a comparison between the results
of the more usual KGF and Proca formalisms. Finally, in the last section we make some comments
on the results.
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2. The Lyra geometry

The Lyra manifold [2] is defined given a tensor metricgµν and a positive definite scalar function
φ which we call the scale function. In Lyra geometry, one can change scale and coordinate system
in an independent way, to compose what is called areference systemtransformation: letM ⊆ RN

andU an open ball inRn, (N≥ n) and letχ : U yM. The pair(χ,U) defines acoordinate system.
Now, we define a reference system by(χ,U,φ) whereφ transforms like

φ̄(x̄) = φ̄(x(x̄) ;φ(x(x̄))) ,
∂φ̄
∂φ
6= 0 (2.1)

under a reference system transformation.

In the Lyra’s manifold, vectors transform as

Āν =
φ̄
φ

∂x̄ν

∂xµAµ (2.2)

In this geometry, the metric connection is

Γ̃ρ
µν ≡

1
φ

Γ̊ρ
µν +

1
φ

[
δρ

µ∂ν ln

(
φ
φ̄

)
−gµνgρσ∂σ ln

(
φ
φ̄

)]
, Γ̊ρ

µν ≡
1
2

gρσ (∂µgνσ +∂νgσµ−∂σgµν)

(2.3)
whose transformation law is given by

Γ̃ρ
µν =

φ̄
φ

Γ̄σ
λε

∂xρ

∂x̄σ
∂x̄λ

∂xµ

∂x̄ε

∂xν +
1
φ

∂xρ

∂x̄σ
∂2x̄σ

∂xµ∂xν +
1
φ

δρ
ν

∂
∂xµ ln

(
φ̄
φ

)
. (2.4)

One can define the covariant derivative for a vector field as

∇µAν ≡ 1
φ

∂µAν + Γ̃ν
µαAα , ∇µAν ≡ 1

φ
∂µAν− Γ̃α

µνAα . (2.5)

The richness of the Lyra’s geometry is demonstrated by thecurvature[3]

R̃ρ
βασ ≡

1
φ2


∂

(
φΓ̃ρ

ασ
)

∂xβ −
∂
(

φΓ̃ρ
βσ

)

∂xα +φΓ̃ρ
βλφΓ̃λ

ασ−φΓ̃ρ
αλφΓ̃λ

βσ


 (2.6)

and thetorsion[15]

τ̃ ρ
µν ≡ Γ̃ρ

µν− Γ̃ρ
νµ− 1

φ
(
δρ

µ∂ν−δρ
ν∂µ

)
lnφ (2.7)

where the second term is the anholonomic contribution, thus, we get

τ̃ ρ
µν =−1

φ
(
δρ

µ∂ν−δρ
ν∂µ

)
ln φ̄ , τ̃µ≡ τ̃ ρ

µρ =
3
φ

∂µ ln φ̄ . (2.8)
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3. The massive DKP field in Lyra manifold

In Minkowski space–time the massive DKP theory is given by the following Lagrangian den-
sity

L =
i
2

ψβa∂aψ− i
2

∂aψβaψ−mψψ, (3.1)

whereψ = ψ†η0 , η0 = 2
(
β0

)2−1, and theβa are matrices satisfying the massless DKP algebra1

βaβbβc +βcβbβa = βaηbc+βcηba. (3.2)

The resulting equation of motion for the DKP fieldψ is

iβa∂aψ−mψ = 0 . (3.3)

The above equations can be generalized to Lyra space–time [2] L through the formalism of
tetrads(or vierbeins) together theminimal coupling procedure[16, 17]. Here we shall simply
quote the main results we need. For details, in Riemann and Riemann–Cartan manifolds, we refer
respectively to [7, 8] and [9, 10, 12] and references therein.

We consider a Lyra space-timeL with metricgµν, whose point coordinates are labelledxµ. To
each point inL we attach a Minkowski space-timeM with metricηab, whose point coordinates are
labelledxa. The DKP fieldsψ areLorentz grouprepresentations in Minkowski space-time. The
projections intoL of all tensor quantities defined onM are donevia the tetrad fieldseµ

a(x) :

gµν(x) = ηabeµ
a(x)eν

b(x) , eν
aeν

b = δa
b , e= det(eµ

a) =
√−g, (3.4)

whereg = det(gµν).
The resulting action for massive DKP fields minimally coupled to Lyra’s manifold is

SDKP =
Z

d4xφ4e

(
i
2

ψβaeµ
a∇µψ− i

2
∇µψeµ

aβaψ−mψψ
)

, (3.5)

where∇µ is the Lyra covariant derivative associated to the affine connectionΓ̃ν
αµ.

The covariant derivatives of DKP fields are

∇µψ =
1
φ

∂µψ+
1
2

ωµabS
abψ , ∇µψ =

1
φ

∂µψ− 1
2

ωµabψSab,

whereSab = [βa,βb] andωµab is the spin connection.

The Euler-Lagrange equation for theψ field is

iβµ
(

∇µ+
1
2

τ̃µ

)
ψ−mψ = 0 (3.6)

where we have used the metricity condition,∇αeµ
a = 1

φ ∂αeµ
a− Γ̃ρ

αµeρ
a +ωαb

aeµ
b ≡ 0.

1We choose a representation in whichβ0† = β0, βi† =−βi .
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3.1 The scalar sector

In Minkowski space–time, the “projectors”P andPa select the spin 0 sector of the theory (see
[13, 7]) such thatPψ is a scalar andPaψ is a vector field. Thus, from these projectors defined inM
we can construct the projectors in Lyra manifold asPµ = eµ

aPa = eµ
aPβa = Pβµ.

From the definitions above and the properties ofP andPa it is easy to verify thatPµβν =
Pgµν , PSµν = 0, and it can also be seen thatP∇µψ = ∇µ(Pψ) andPν∇µψ = ∇µ(Pνψ) due to the
metricity condition. Therefore, under general coordinate transformations,Pψ is a scalar andPνψ
is a vector.

By applying the projectorsP andPµ to the equation (3.6), we get respectively,

mPψ = i

(
∇µ+

1
2

τ̃µ

)
Pµψ , mPµψ = i

(
∇µ+

1
2

τ̃µ
)

Pψ (3.7)

by mixing both equation, we obtain the equation of motion for the scalarPψ. We choose a represen-
tation where DKP field is a 5-vector column such asψ = (ϕ,ψ0,ψ1,ψ2,ψ3)T , Pψ = (ϕ,0,0,0,0)T

andPaψ = (ψa,0,0,0,0)T . Thus, we have

(
∇µ+

1
2

τ̃µ

)(
∇µ+

1
2

τ̃µ
)

ϕ+m2ϕ = 0 (3.8)

As we can see above, the interaction with torsion does not disappear, even after we selected the
spin 0 sector of the DKP field. This interaction is present both in the connectionΓ̃ν

αµ used in the
calculation of the covariant derivative∇µ and in the explicit presence of terms containing the trace
torsionτ̃µ in the equation above.

On the other hand, when the Lyra geometry is minimally coupled to the massive Klein-
Gordon-Fock field, we get

SLKG =
Z

d4x φ4√−g
(
∇µϕ∗∇µϕ−m2ϕ∗ϕ

)
, (3.9)

where the covariant derivative of the KGF scalar reads∇µϕ = 1
φ ∂µϕ.

The KGF action (3.9) results in the following equation of motion

(∇µ+ τ̃µ)∇µϕ+m2ϕ = 0, (3.10)

We can see that there exist interaction with the trace torsion. It is a different situation to what
happened in Riemann-Cartan spacetime where the scalar field does not couple with torsion [9].
However, the spin 0 DKP equation (3.8) is different of KGF equation (3.10).

The difference will be better understood if we project the DKP action (3.5) to its spin 0 sector.
Thus, by using the equation (3.7) to relate the vectorψµ to the scalarϕ, and after some integration
by parts and a rescalingϕ→√

mϕ, the DKP action (3.5) reads as

SLDKP0 =
Z

d4x φ4√−g

(
∇µϕ∗∇µϕ−m2ϕ∗ϕ− 1

2
∇µτ̃µϕϕ∗− 1

4
τ̃µτ̃µϕ∗ϕ

)
, (3.11)

from this action we can obtain the spin 0 DKP equation given in (3.8). And it has two non minimal
coupling which do not appear in the KGF action (3.9).
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3.2 The vectorial sector

Now we use the Umezawa’s “projectors”Rµ andRµν in order to analyze the spin1 sector of
the theory. We remember thatRµψ ≡ ψµ is a vector andRµνψ ≡ ψµν is a second rank antisym-
metric tensor in a Lyra sense. Applying these operators on the equation of motion (3.3) we get,
respectively,

mψµ = i

(
∇β +

1
2

τ̃β

)
ψµβ , mψµβ = i

(
∇α +

1
2

τ̃α

)(
gαβψµ−gαµψβ

)
(3.12)

by mixing both equations, we found the equation of motion for the vector fieldψµ

(
∇β +

1
2

τ̃β

)(
∇α +

1
2

τ̃α

)(
gαβψµ−gαµψβ

)
+m2ψµ = 0 (3.13)

We project the massive DKP action (3.5) to its spin 1 sector. Then, by using the equation (3.12)
which relates the tensor fieldψµν to the vectorψµ and, after some integration by parts and a rescal-
ing ψµ→√

mψµ the DKP action (3.5) becomes

SLDKP1 =
Z

d4xφ4e

(
− 1

2φ2 f µν f ∗µν +m2ψ∗µψµ− 1
6φ

(
f µνΣ∗µν + f ∗µνΣµν)− 1

18
ΣµνΣ∗µν+ (3.14)

− 1
3φ

( f ∗µνSµν +S∗µν fµν)− 1
9

(Σ∗µνSµν +S∗µνΣµν)− 2
9

S∗µνSµν

)

where

fµν ≡ ∂µψν−∂νψµ , Σµν ≡ 1
2

(τ̃µψν− τ̃νψµ) , Sµν ≡ 3
2φ

(ψν∂µ−ψµ∂ν) ln(φ) . (3.15)

Otherwise, the Proca’s lagrangian in Minkowski space–time is given by

LPR =−1
2

(∂aA∗b−∂bA∗a)
(

∂aAb−∂bAa
)

+m2A∗aAa (3.16)

By making the minimal coupling procedure to the Lyra spacetime, we get

SLPR =
Z

d4xφ4e

(
− 1

2φ2FµνF∗µν +m2A∗µAµ+
1
3φ

(
FµνΣ∗µν +F∗µνΣµν)− 2

9
ΣµνΣ∗µν+ (3.17)

− 1
3φ

(F∗µνSµν +S∗µνFµν)+
2
9

(Σ∗µνSµν +S∗µνΣµν)− 2
9

S∗µνSµν

)

4. Comments

A simple comparison between the Lagrangians and equations of motion shows us the unequiv-
alence of DKP theory with KGF and Proca descriptions of scalar and vector massive particles.
However, a more accurated inspection reveals the spin 0 case as a problem of nonminimal cou-
pling. In the spin 1 case the situation is more complicated, because all terms in DKP Lagrangian
are also present in the Proca, but with modified coupling constants.

Now, from (3.14) we can see that

SM4
DKP1 =

Z
d4x

[
−1

2
(∂aψ∗b−∂bψ∗a)

(
∂aψb−∂bψa

)
+m2ψ∗aψa

]
−→ SLDKP1 (4.1)
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by the prescription

∂a → Dµ≡ ∇µ+
1
2

τµ . (4.2)

One can see that the prescription (4.2) only changes the strength of the coupling with respect
the usual minimal coupling procedure. It can be explicitly observed by analysing the proportion
between the coefficients of the interactions in the actionsSLDKP1 (3.14) andSLPR (3.17).

In our future perspectives we will do a study of the relationship between Lyra geometry and
gauge theories, which is now in course using the Utiyama general theory. At same time, the cou-
pling of Dirac field with this manifold is in preparation. We hope that these studies can clarify if
the nonequivalence is restricted to manifolds with torsionand curvature, or if it is related to the
structure of the field theory used to describe the particles.
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