
Hyperbolic Space Forms and Orbifold
Compactification in M-Theory

Andrey A. Bytsenko
Depto. de Física, Univ. Estadual de Londrina, Paraná, Brazil
E-mail: abyts@uel.br

Maria Emília X. Guimarães
Depto. de Matemática, Univ. de Brasília, DF, Brazil
E-mail: marg@unb.br

José Abdalla Helayël-Neto ∗

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
E-mail: helayel@cbpf.br

We analyze solutions of supergravity and string theories which involve real hyperbolic spaces.

Examples of string compactifications are given in terms of hyperbolic coset spaces of finite vol-

ume Γ\HN, whereΓ is a discrete group of isometries ofHN. We describe finite flux and the

tensor kernel associated with hyperbolic spaces. The special case of an arithmetic geometry of

Γ = SL(2,Z+ iZ)/{±Id}, whereId is the identity matrix, is analyzed. We discuss supersymmetry

surviving for supergravity solutions involving real hyperbolic space factors, string-supergravity

correspondence and holography principle for a class of conformal field theories.

Fourth International Winter Conference on Mathematical Methods in Physics
09 - 13 August 2004
Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, Brazil

∗Speaker.

Published by SISSA http://pos.sissa.it/

mailto:abyts@uel.br�
mailto:marg@unb.br�
mailto:helayel@cbpf.br�


Hyperbolic Space Forms and Orbifold Compactification in M-Theory José Abdalla Helayël-Neto

1. Introduction

In supergravity and string theories the de Sitter, anti de Sitter spaces andN−spheresSN play
important role. These spaces as well asN−dimensional real hyperbolic spacesHN naturally arise
as the near-horizon solutions of black brane geometries. Spheres and the anti de Sitter spaces, as
supergravity solutions, have been extensively investigated (see, for example, [1]). As for the de
Sitter spaces, not much calculations have been done for such solutions. The reason relies on the
fact that the de Sitter space breaks supersymmetry and is not suitable to describe universes with
zero cosmological constant.

TheN−dimensional real hyperbolic space can be represent as the symmetric spaceX = G/K,
whereG = SO1(N,1) andK = SO(N) is a maximal compact subgroup ofG. Hyperbolic space
forms admit Killing spinors [2, 3, 4, 5] but they have infinite volume, and do not seem useful for
describing internal spaces in string compactifications. Let us regardΓ as a discrete subgroup of
G acting isometrically onX, and takeXΓ to be quotient space by that action:XΓ = Γ\G/K. The
question of interest is whether the spaceXΓ admits Killing spinors and preserves supersymmetry.
Comments on this question for some examples of finite volume hyperbolic spaces can be found in
[6]. There is a large class of new string regular compactifications (except possible orbifold points)
involving real hyperbolic spaces or their coset spaces with very smallα′ string corrections. Among
the possible applications of these solutions, the definition of newN = 0 conformal field theories
in four dimensions via holography [6] (see also [7, 8]), and new models for dimensional reduction
in non-compact spaces.

In this paper we discuss solutions of the eleven-dimensional supergravity which can be pre-
sented by means of direct product of spaces containing real hyperbolic space forms as factors. We
derive the Laplace operator onp−forms, the trace formula applied to the tensor kernel and spec-
tral functions of compact hyperbolic spaces. We take into account the orbifolding of the discrete
groupΓ. Finally we discuss the questions of supersymmetry surviving under the orbifolding, and
string-supergravity correspondence in its connection to the holographic principle.

2. Hyperbolic sectors in eleven-dimensional backgrounds

In eleven-dimensional supergravity the graviton multiplet contains the gravitongMN, the anti-
symmetric three-formAMNK and the gravitinoΨM (M,N,K, ... = 0,1, ...,10). The bosonic part of
the supergravity Lagrangian has the form

L(boson) =
1

2κ2
11

√
g

(
R− 1

2·4!
FMNPQFMNPQ

)
− 1

124 εM1...M11AM1M2M3FM4...M7FM8...M11 . (2.1)

A solution to the equations of motions

RMN =
1
12

(
FMPQRFN

PQR− 1
12

gMNF2
)

, (2.2)

∇MFMNPQ = − 1
1152

εNPQR1...R8FR1...R4FR5...R8 , (2.3)

is provided by the Freund-Rubin ansatz for the antisymmetric field strength

Fmnpq= 6m0 εmnpq for m,n, ... = 7, ...,10; FMNPQ = 0, otherwise. (2.4)
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By substituting this ansatz into the field equations (2.2) we get

Rµν =−6m2
0gµν , µ,ν = 0, ...6, Rmn = 12m2

0gmn. (2.5)

The requirement of unbroken supersymmetry, i.e., the vanishing of the gravitino transformation

δΨM = ∇Mε− 1
288

(
ΓM

PQRS−8δM
PΓQRS

)
εFPQRS, (2.6)

for the ansatz (2.4), is equivalent to the existence ofSO(1,6) andSO(4) Killing spinorsθ andη,
respectively, which satisfy

∇µθ =±1
2

m0γµθ , ∇mη =±m0γmη , (2.7)

whereγµ(γm) areSO(1,6) (SO(4)) γ-matrices. Eq. (2.5) admits a solution of the formX7×Y4

whereX7 andY4 are Einstein spaces of negative and positive curvature, respectively. But only
those spaces that admit Killing spinors obeying Eq. (2.7) preserve supersymmetry. The integrability
conditions of Eq. (2.7) areWµνρσγρσθ = 0,Wmnpqγpqη = 0, whereWµνρσ,Wmnpqare the Weyl tensors
of X7, Y4, respectively. Thus, obvious supersymmetric examples forY4 include the round four-
sphereS4 and its orbifoldsΓ\S4, whereΓ is an appropriate discrete group [9]. For theX7 space
one can take the anti de Sitter spaceAdS7, which preserves supersymmetry as well, and leads to the
AdS7×S4 vacuum of eleven-dimensional supergravity. There are solutions to Eq. (2.5) involving
hyperbolic spaces which are vacua of eleven-dimensional supergravity, and solve Eqs. (2.2), (2.3):

(i) AdS7−N×HN×S4, N≥ 2

(ii) AdS3×H2×H2×S4

(iii) AdS2×H2×H3×S4

3. Hyperbolic geometry in type II supergravity

3.1 Fluxes onG/K

First we note that a conformal field theory involving the upper half three-spaceH3 can be
constructed as a Wess-Zumino-Witten (WZW) model based on the cosetSL(2,C)/SU(2). In par-
ticular, this theory can be combined with the NS5-brane by summing both conformal sigma models.
In the time direction one needs to add a linear dilaton in order to saturate the central gauge. Such a
construction leads to an NS-NS two-form gauge field with imaginary components. But by S-duality
it could be converted into a R-R two-form with imaginary components, which leads to a solution
of type IIB* theory. Thus, as a result the conformal model is an exact solution of string theory
to all orders in theα′−expansion. These sigma models can also be constructed directly by brane
intersections [6, 10]. To construct solutions with brane charges, we could start with the NS5 brane,
with flux onH3, which is a formal analog of the NS five brane solution, in which the three-sphere
is replaced by a hyperbolic space. By S-duality, and redefining the RR two-form, this result could
be converted into a solution of type IIB* supergravity.

Near horizon solution of the discussing model is a direct product of a flat space with linear
dilaton and aSL(2,C)/SU(2) WZW model. Also the near-horizon geometry of the NS5 brane with
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flux onH3 describes a backgroundAdS3×S3×H3×S1, with a linear dilaton in the time direction
[6]. By U-duality, one can construct also different D-brane solutions with time dependence. In
order to have finite flux, the spaceH3 can be replaced by the finite volumeΓ\H3 space.

3.2 Cusp forms

We begin with the Dirac heat kernelTr(De−tD) which could be expanded as a series of or-
bital integrals associated to the conjugacy classes[γ] in Γ. Each orbital integral, over a necessary
semisimple orbit, can be in turn expressed in terms of the noncommutative Fourier transform of
the heat kernel, along the tempered unitary dual ofG, the group of isometries of the symmetric
spaceG/K. The results of [11] on the series expansion for the case of compact locally symmet-
ric spaces of higher ranks has been extended to the odd dimensional non-compact spaces with
cusps in [12]. More precisely, taking into account the fixed Iwasawa decompositionG = KAN,
consider aΓ−cuspidal minimal parabolic subgroupGP of G with the Langlands decomposition
GP = BAN, B being the centralizer ofA in K. Let us define the Dirac operatorD, assuming a spin
structure forΓ\Spin(2k+ 1,1)/Spin(2k+ 1)). The spin bundleEτs is the locally homogeneous
vector bundle defined by the spin representationτs of the maximal compact groupSpin(2k+ 1).
One can decompose the space of sections ofEτs into two subspaces, which are given by the half
spin representationsσ± of Spin(2k)⊂ Spin(2k+1). Let us consider a family of functionsKt over
G = Spin(2k+1,1), which is given by taking the local trace for the integral kernelexp(−tD2) (or
Dexp(−tD2)). The Selberg trace formula applied to the scalar kernel functionKt holds [12]:

∑
σ=σ±

∑
λk∈σ±p

K̂t(σ, iλk) − i
4π

∫

R
dsTr

(
SΓ(σ±,−s)

d
ds

SΓ(σ+,s)πΓ(σ+,s)(Kt)
)

= IΓ(Kt)+HΓ(Kt)+UΓ(Kt) , (3.1)

whereσp := σ+
p

⋃
σ−p gives the point spectrum ofD, SΓ(σ+, iλ) is the intertwining operator and

IΓ(Kt), HΓ(Kt), UΓ(Kt) are the identity, hyperbolic and unipotent orbital integrals. IfKt is given
by De−tD2

, then IΓ(Kt) = 0 by the Fourier transformation ofKt . The analysis of the unipotent
orbital integralUΓ(Kt) gives the following result [13, 12]: All of the unipotent terms vanish in the
Selberg trace formula applied to the odd kernel functionKt given byDe−tD2

. It means that one
can obtain spectral invariants in the case of cusps similar to that in the case of smooth compact odd
dimensional manifolds.

4. The arithmetic geometry ofΓ = SL(2,Z+ iZ)/{±Id}

Let τ be an irreducible representation ofK on a complex vector spaceVτ, and form the induced
homogeneous vector bundleG×K Vτ. Restricting theG action toΓ we obtain the quotient bundle
Eτ = Γ\(G×K Vτ) −→ XΓ = Γ\X over X. The natural Riemannian structure onX (therefore on
XΓ) induced by the Killing form( , ) of G gives rise to a connection LaplacianL on Eτ. If ΩK

denotes the Casimir operator ofK−that isΩK = −∑y2
j , for a basis{y j} of the Lie algebrak0 of

K, where(y j ,y`) = −δ j`, thenτ(ΩK) = λτ1 for a suitable scalarλτ. Moreover for the Casimir
operatorΩ of G, with Ω operating on smooth sectionsΓ∞Eτ of Eτ one hasL = Ω−λτ1. Forλ≥ 0
let Γ∞ (XΓ ,Eτ)λ = {s∈ Γ∞Eτ |−Ls= λs} be the space of eigensections ofL corresponding toλ.
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Here we note that ifXΓ is compact we can order the spectrum of−L by taking0 = λ0 < λ1 <

λ2 < · · ·; lim j→∞ λ j = ∞. We shall specializeτ to be the representationτ(p) of K = SO(N) on
ΛpCN. It will be convenient moreover to work with the normalized LaplacianL =−c(N)L where
c(N) = 2(N−1) = 2(2k−1). L has spectrum

{
c(N)λ j ,mj

}∞
j=0 where the multiplicitymj of the

eigenvaluec(N)λ j is given bymj = dim Γ∞ (XΓ ,Eτ(p))λ j
.

Let us consider group of local isometry associated with a simple three-dimensional complex
Lie group. The discrete group can be chosen in the formΓ⊂ PSL(2,C)≡ SL(2,C)/{±Id}, where
Id is the2×2 identity matrix and is an isolated element ofΓ. The groupΓ acts discontinuously at
point z∈ C̄, C̄ being the extended complex plane. We consider a special discrete groupSL(2,Z+
iZ)/{±Id}, whereZ is the ring of integer numbers. The elementγ ∈ Γ will be identified with−γ.
The groupΓ has, within a conjugation, one maximal parabolic subgroupΓ∞. Let us consider an
arbitrary integral operator with kernelk(z,z′). Invariance of the operator is equivalent to fulfillment
of the conditionk(γz,γz′) = k(z,z′) for any z,z′ ∈ H3 and γ ∈ PSL(2,C). So the kernel of the
invariant operator is a function of the geodesic distance betweenz and z′. It is convenient to
replace such a distance with the fundamental invariant of a pair of pointsu(z,z′) = |z− z′|2/yy′,
thusk(z,z′) = k(u(z,z′)) . Let λ j be the isolated eigenvalues of the self-adjoint extension of the
Laplace operator and let us introduce a suitable analytic functionh(r) andr2

j = λ j −1. It can be
shown thath(r) is related to the quantityk(u(z,γz)) by means of the Selberg transform. Let us
denote byg(u) the Fourier transform ofh(r), namelyg(u) = (2π)−1∫

Rdrh(r)exp(−iru).

Theorem 1. Suppose thath(r) is an even analytic function in the strip|ℑr| < 1+ ε (ε > 0), and
h(r) = O(1+ |r|2)−2. For the special discrete groupSL(2,Z+ iZ)/{±Id} the Selberg trace formula
holds

∑
j

h(r j) − ∑
{γ}Γ,γ 6=Id,

γ−non−parabolic

∫
dµ(z)k(u(z,γz))

− 1
4π

∫

R
drh(r)

d
ds

logS(s)|
s=1+ir

+
h(0)

4
[S(1)−1]−Cg(0)

= Vol(Γ\G)
∫ ∞

0

dr r2

2π2 h(r)− 1
4π

∫

R
drh(r)ψ(1+ ir/2). (4.1)

The first term in the right hand site of Eq. (4.1) is the contribution of the identity element,Vol(Γ\G)
is the (finite) volume of the fundamental domain with respect to the measuredµ, ψ(s) is the
logarithmic derivative of the EulerΓ−function, andC is a computable real constant [14, 15,
16]. The functionS(s) is given by a generalised Dirichlet series, convergent forℜs> 1, S(s) =
π1/2Γ(s−1/2)[Γ(s)]−1 ∑c6=0 ∑0≤d<|c| |c|−2s, where the sums are taken over all pairsc,d of the ma-

trix

(
∗ ∗
c d

)
⊂ Γ∞\Γ/Γ∞. Also the poles of the meromorphic functionS(s) are contained in the

regionℜs< 1/2 and in the interval[1/2,1].

5. Further analysis of the results

To summarize, we propose that our results can be applied in the following problems.

017 / 5



Hyperbolic Space Forms and Orbifold Compactification in M-Theory José Abdalla Helayël-Neto

Finite volume cosetsΓ\G/K and Killing spinors . In the previous sections we have discussed
supergravity solutions involving anti de Sitter and real hyperbolic space factors. Hyperbolic spaces
have infinite volume with respect to the Poincaré metric. Thus there are no normalizable modes
for any field configurations in hyperbolic spaces. On the other hand, non-empty bulk and boundary
field theories can be obtained by forming the coset spaces with topologyΓ\HN.

The hyperbolic manifoldsHN, as factors in solution (i) of Sec. 2, admit Killing spinors.
However, having the space forms (ii), (iii) of Sec. 2:AdS3×H2×H2×S4, AdS2×H2×H3×S4, as
the solutions of supergravity theory, one can recognize that the factorsH2×H2, H2×H3 cannot
leave any unbroken supersymmetry. Indeed, the following result holds.

Proposition 1. (T. Friedrich [17]) A Riemannian spin manifold(MN,g) admitting a Killing spinor
ψ 6= 0 with Killing numberµ 6= 0 is locally irreducible.

Proof. Let the locally Riemannian product be in the formMN = MK×MN−K . Let X ,Y be vectors
tangent toMK and MN−K respectively, and, therefore, the curvature tensor of the Riemannian
manifold(MN,g) is trivial. Sinceψ is a Killing spinor the following equations hold (see also Eq.
(2.7)):

∇X ψ = µX ·ψ, 4µ2 = [N(N−1)]−1R

at each point of a connected Riemannian spin manifold(MN,g), (5.1)

whereR is a scalar curvature. Because of (5.1) we have

∇X ∇Y ψ = µ(∇X Y ) ·ψ+µ2Y ·X ·ψ =⇒
(∇X ∇Y −∇Y ∇X −∇[X ,Y ])ψ = µ2(Y ·X −X ·Y )ψ. (5.2)

The curvature tensorR(X ,Y ) in the spinor bundleS is related to the curvature tensor of the Rie-
mannian manifold(MN,g): R(X ,Y ) = (1/4)∑N

j=1ejR(X ,Y )ej ·ψ, where{ej}N
j=1 is a orthogonal

basis in the manifold. Therefore Eq. (5.2) can also be written as

N

∑
j=1

ejR(X ,Y )ejψ+[N(N−1)]−1R(X Y −Y X )ψ = 0. (5.3)

From Eq. (5.3), we getR·X ·Y ·ψ = 0, and moreoverX andY are orthogonal vectors. Sinceµ 6= 0
(R 6= 0) it follows thatψ = 0, hence a contradiction.¤

Simple type IIB supergravity backgrounds with D3 brane charge and constant dilaton are the
following: AdS3×H2×S5, AdS2×H3×S5. Like AdS5×S2×S3, these spaces have no Killing
spinors and the solution is not supersymmetric [6]. But this solution is regular everywhere (being
a direct product of Einstein spaces), andα′ corrections can be made very small for sufficiently
large radius of compact part. Although non-supersymmetric, these spaces are an interesting setup
for string compactification, in particular, for the construction of conformal field theories. Other
compactifications can be obtained by replacing hyperbolic space factorsH4 by any Einstein space
X4 of the same negative curvature, leading to the solutionAdS3×X4× S4. In fact we have the
following statement:
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Proposition 2. (T. Friedrich [17]) Let (MN,g) be a connected Riemannian spin manifold and let
ψ be a non-trivial Killing spinor with Killing numberµ 6= 0. Then(MN,g) is an Einstein space.

Proof. The proof easily follows from Proposition 2; indeed(MN,g) is an Einstein space of scalar
curvature given by Eq. (5.1). ¤

A relevant question is whether supersymmetry survives under the orbifolding by the discrete
groupΓ. This question could be addressed also to the factorsΓ\(H2×H2), Γ\(H2×H3). Perhaps
there are more complicate solutions involving real hyperbolic spaces, where some supersymmetries
are unbroken. However analysis of that problem is complicate and we leave it for another occa-
sion. In fact, supersymmetry guarantees the stability of the physical system. But its absence does
not necessarily implies instability. In general, a definite statement for the stability of supergrav-
ity solutions needs a study of the spectral properties of the operators, which are not well studied yet.

String-supergravity correspondence. A version of duality states that string theory (or M the-
ory) compactified on spaces of the formAdSD+1× (Γ\HN)× SK defines aD−dimensional con-
formal field theory withSO(K + 1) global symmetry. In addition, the correlation functions of
the conformal field theory are defined as follows [18, 19] 〈exp{∫ dDx Φboundary(x)O(x)}〉CFT ≡
Zstring(Φboundary(x)) , whereZstring is the partition function of the string theory computed with
boundary values of the string fields, which act as sources of operators of conformal theory. In
the classical limit of supergravity the string partition function can be evaluated as follows:Zstring

∼=
exp[−ISG(Φ)], where the solution of the equations of motion in the backgroundAdSD+1×(Γ\HN)×
SK with the boundary conditionΦboundary, has to be taken into account.

Following the lines of [6] we mention here two interesting cases of supergravity solutions.
First, theD = 11supergravity solution of the formAdS5×M2×S4. This model is dual to aD = 4
non-supersymmetric conformal field theory withSO(5) global symmetry group. The supergravity
solution has M5-brane charge and one may expect the theory to be related to the six-dimensional
(2,0) or (1,0) conformal field theories. The second case is the eleven-dimensional supergravity
solutionAdS4×M3×S4, and the type IIB solutionAdS3×M2×S5. TheAdS4×M3×S4 solution
has M5 brane charge. Thus, the dual field theory is aD = 2+1 conformal field theory associated
with the 6D (2,0) conformal theory, with an internal global symmetry groupSO(5). Finally the
later solution has D3 brane charge and it should be dual to someN = 0 D = 1+1 conformal field
theory related toN = 4 D = 3+1 super Yang-Mills theory.

Results on the holographic principle. The backgrounds considered in previous sections can be
used for the construction of newN = 0 conformal field theories by holography. According to the
holographic principle, there exist strong ties between certain field theories on a manifold (“bulk
space”) and on its boundary (at infinity). A few mathematically exact results relevant to that pro-
gram are the following. The class of Euclidean AdS3 spaces which we have considered here are
quotients of the real hyperbolic spaceH3 by a Schottky group. The boundaries of these spaces can
be compact oriented surfaces with conformal structure (compact complex algebraic curves).

In [20], a principle associated with the Euclidean AdS2 holography has been established. The
bulk space is there a modular curve, which is the global quotient of the hyperbolic planeH2 by
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a finite index group,Γ, of G = PSL(2,Z). The boundary at infinity is thenP1(R). Let M be a
coset spaceM = Γ\G. Then, the modular curveXΓ := Γ\H2 can be presented as the quotient
XΓ = G\(H2×M); its non-commutative boundary (in the sense of Connes [21]) as theC∗− algebra
C(P1(R)×M)>CG, Morita equivalent toC(P1(R))>CΓ [22, 20]. The results which have been
regarded as manifestations of the holography principle are [20]:

• There is a correspondence between the eigenfunctions of the transfer operatorLs and the
eigenfunctions of the Laplacian (Maas wave forms).

• The cohomology classes inH1(XΓ,cusps,R) can be regarded as elements in the cyclic coho-
mology of the algebraC(P1(R)×M)>CG. Cohomology classes of certain geodesics in the
bulk space correspond to projectors in the algebra of observables on the boundary space.

• An explicit correspondence exists between a certain class of fields in the bulk space (Mellin
transforms of modular forms of weight two) and the class of fields on the boundary.

Other constructions associated with the symmetric space can be considered for convex cocompact
groups. In fact, let∂X be a geodesic boundary of the symmetric spaceX of a real, rank one,
semisimple Lie groupG. If Γ ⊂ G is a discrete torsion-free subgroup, then aΓ−equivalent de-
composition,∂X = Ω∪Λ, can be constructed, whereΛ is the limit set ofΓ. The subgroupΓ is
called convex cocompact ifΓ\X ∪Ω is a compact manifold with boundary [23]. The geometry
boundary ofHN in half-space Poincaré model is∂∞HN =RN−1∪∞. If Γ is convex cocompact and
torsion free, then the orbit space,XΓ = Γ\HN, may be viewed as the interior of a compact manifold
with boundary, namely the Klein manifold forΓ, X = (Γ\HN)∪ (Γ\Ω(Γ)), so that the boundary at
infinity is given by∂∞XΓ = ∂X = Γ\Ω(Γ).
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