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1. Introduction

In supergravity and string theories the de Sitter, anti de Sitter spacds-aspheresN play
important role. These spaces as welNasdimensional real hyperbolic spacé$' naturally arise
as the near-horizon solutions of black brane geometries. Spheres and the anti de Sitter spaces, as
supergravity solutions, have been extensively investigated (see, for exafjpleA$ for the de
Sitter spaces, not much calculations have been done for such solutions. The reason relies on the
fact that the de Sitter space breaks supersymmetry and is not suitable to describe universes with
zero cosmological constant.

TheN—dimensional real hyperbolic space can be represent as the symmetriXspa@gek,
whereG = SO (N,1) andK = SQ\N) is a maximal compact subgroup & Hyperbolic space
forms admit Killing spinors(2, 3, 4, 5] but they have infinite volume, and do not seem useful for
describing internal spaces in string compactifications. Let us rdgasia discrete subgroup of
G acting isometrically orX, and takeXr to be quotient space by that actio§: = N'\G/K. The
guestion of interest is whether the spageadmits Killing spinors and preserves supersymmetry.
Comments on this question for some examples of finite volume hyperbolic spaces can be found in
[6]. There is a large class of new string regular compactifications (except possible orbifold points)
involving real hyperbolic spaces or their coset spaces with very srhsiting corrections. Among
the possible applications of these solutions, the definition of Aigw 0 conformal field theories
in four dimensions via holograph$][ (see alsoT, 8]), and new models for dimensional reduction
in non-compact spaces.

In this paper we discuss solutions of the eleven-dimensional supergravity which can be pre-
sented by means of direct product of spaces containing real hyperbolic space forms as factors. We
derive the Laplace operator gn-forms, the trace formula applied to the tensor kernel and spec-
tral functions of compact hyperbolic spaces. We take into account the orbifolding of the discrete
groupl. Finally we discuss the questions of supersymmetry surviving under the orbifolding, and
string-supergravity correspondence in its connection to the holographic principle.

2. Hyperbolic sectors in eleven-dimensional backgrounds

In eleven-dimensional supergravity the graviton multiplet contains the gragitnthe anti-
symmetric three-formdynk and the gravitinddy (M,N,K,... =0,1,...,10). The bosonic part of
the supergravity Lagrangian has the form

1 1 1
Liboson = ﬂ\fg (R— MFMNPQFMNPQ) - Ele‘“M“AMleMgFM4...M7FM8...M11- (2.1)

A solution to the equations of motions

1 1
RvIN 12< MPQRFN 129|\/|N , (2.2)
1
OMFMNPR = — eV R 23

is provided by the Freund-Rubin ansatz for the antisymmetric field strength

Frnpg= 6Mo&mnpq for mn,...=7,...,10; Funpo =0, otherwise (2.4)
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By substituting this ansatz into the field equatic2&) we get

Ry = —6mggw, KV=0,.6, Rmn=12Tggmn. (2.5)
The requirement of unbroken supersymmetry, i.e., the vanishing of the gravitino transformation
6l-|JM =[0Oue— i (FMPQRS— 86MPFQRS) eFpor (2 6)
288 QRS '

for the ansatz4.4), is equivalent to the existence 8f0(1,6) andSQ4) Killing spinors@ andn,
respectively, which satisfy

1
0.0 = iémovue, Omn = £MoYmn (2.7)

whereyy(ym) areSQ(1,6) (SO4)) y-matrices. Eq. 2.5) admits a solution of the fornx” x Y*
whereX’ andY# are Einstein spaces of negative and positive curvature, respectively. But only
those spaces that admit Killing spinors obeying 2a/)(preserve supersymmetry. The integrability
conditions of Eq.2.7) areWwpsY?°08 = 0, Winnpdy?IN = 0, whereWypg, Winpgare the Weyl tensors

of X7, Y4, respectively. Thus, obvious supersymmetric example¥ fdnclude the round four-
sphereS* and its orbifolds™\S*, wherel is an appropriate discrete grou@].[ For theX’ space

one can take the anti de Sitter sp&aEsy, which preserves supersymmetry as well, and leads to the
AdS x S* vacuum of eleven-dimensional supergravity. There are solutions t@E).irfvolving
hyperbolic spaces which are vacua of eleven-dimensional supergravity, and solv2.B)q¢2.Q):

() AdS NxHNxS% N>2
(i) AdSxH?xH?xS*
(i) AdSxH2xH3x S

3. Hyperbolic geometry in type Il supergravity

3.1 Fluxes onG/K

First we note that a conformal field theory involving the upper half three-spdcean be
constructed as a Wess-Zumino-Witten (WZW) model based on the 8b52tC) /SU(2). In par-
ticular, this theory can be combined with the NS5-brane by summing both conformal sigma models.
In the time direction one needs to add a linear dilaton in order to saturate the central gauge. Such a
construction leads to an NS-NS two-form gauge field with imaginary components. But by S-duality
it could be converted into a R-R two-form with imaginary components, which leads to a solution
of type 1IB* theory. Thus, as a result the conformal model is an exact solution of string theory
to all orders in then’—expansion. These sigma models can also be constructed directly by brane
intersections®,[10]. To construct solutions with brane charges, we could start with the NS5 brane,
with flux onH?3, which is a formal analog of the NS five brane solution, in which the three-sphere
is replaced by a hyperbolic space. By S-duality, and redefining the RR two-form, this result could
be converted into a solution of type 11B* supergravity.

Near horizon solution of the discussing model is a direct product of a flat space with linear
dilaton and &8L(2,C)/SU(2) WZW model. Also the near-horizon geometry of the NS5 brane with

017/3



Hyperbolic Space Forms and Orbifold Compactification in M-Theory José Abdalla Helayél-Neto

flux on H2 describes a backgrourlS x S x H2 x S, with a linear dilaton in the time direction
[6]. By U-duality, one can construct also different D-brane solutions with time dependence. In
order to have finite flux, the spa& can be replaced by the finite volufigH?® space.

3.2 Cusp forms

We begin with the Dirac heat kern&r(De ') which could be expanded as a series of or-
bital integrals associated to the conjugacy claggea I'. Each orbital integral, over a necessary
semisimple orbit, can be in turn expressed in terms of the noncommutative Fourier transform of
the heat kernel, along the tempered unitary duabpthe group of isometries of the symmetric
spaceG/K. The results of11] on the series expansion for the case of compact locally symmet-
ric spaces of higher ranks has been extended to the odd dimensional non-compact spaces with
cusps inlL2]. More precisely, taking into account the fixed Iwasawa decompos@iehKAN,
consider a —cuspidal minimal parabolic subgropr of G with the Langlands decomposition
Gp = BAN, B being the centralizer ok in K. Let us define the Dirac operat®, assuming a spin
structure forl\Spin(2k+ 1,1)/Spin(2k+ 1)). The spin bundlé,, is the locally homogeneous
vector bundle defined by the spin representatipof the maximal compact grouppin(2k + 1).

One can decompose the space of sectiorts;ointo two subspaces, which are given by the half
spin representatiors,. of Spin(2k) C Spin(2k+ 1). Let us consider a family of function& over

G = Spin(2k+ 1, 1), which is given by taking the local trace for the integral kel —tD?) (or

D exp(—tD?)). The Selberg trace formula applied to the scalar kernel functjdmolds [L2]:

z K (0,iAk) — ‘:H/RdsTr <Sr(0i,—s)ds-(0+,S)Tu-(0+,S)(‘.7G)>

ds
0=0+ )\k€0:pt

= Ir(%) +Hr (%) +VUr (%), (3.1)

whereoy = 0§U05 gives the point spectrum @, S (0.,iA) is the intertwining operator and
Ir(%), Hr (%), Ur (%) are the identity, hyperbolic and unipotent orbital integrals#glfs given

by De P thenlr (%) = O by the Fourier transformation ak;. The analysis of the unipotent
orbital integralJUr (%;) gives the following result13,112]: All of the unipotent terms vanish in the
Selberg trace formula applied to the odd kernel functigrgiven by@e—mz. It means that one

can obtain spectral invariants in the case of cusps similar to that in the case of smooth compact odd
dimensional manifolds.

4. The arithmetic geometry of = SL(2,Z +iZ)/{*Id}

Lett be an irreducible representationkobbn a complex vector spatg, and form the induced
homogeneous vector bundBex g V;. Restricting theG action tol” we obtain the quotient bundle
Er =M\(G xk Vi) — Xr = '\X over X. The natural Riemannian structure #n(therefore on
Xr) induced by the Killing form( , ) of G gives rise to a connection Laplaciahon E;. If Qg
denotes the Casimir operator f-that isQx = — zyjz, for a basis{y;} of the Lie algebré of
K, where(y;j ,yr) = —98j,, thent(Qk) = A1 for a suitable scalak;. Moreover for the Casimir
operatoiQ of G, with Q operating on smooth sectioRSE; of E; one hast = Q —A:1. ForA >0
let ' (Xr ,Er), = {s€ E;|—£s=As} be the space of eigensections®torresponding ta.
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Here we note that iX- is compact we can order the spectrum-of by taking0 = Ap < A1 <
A2 < -+ limj_«Aj = 0. We shall specialize to be the representation® of K = SOQN) on
APCN. It will be convenient moreover to work with the normalized Laplacgas —c(N)£ where
c(N) = 2(N—1) = 2(2k—1). £ has spectrur{c(N)Aj ,m; }T:o where the multiplicitym; of the
eigenvaluec(N)A| is given bym; = dim I (Xr ,Eﬂp))xj .

Let us consider group of local isometry associated with a simple three-dimensional complex
Lie group. The discrete group can be chosen in the formPSL(2,C) = SL(2,C)/{£Id}, where
Id is the2 x 2 identity matrix and is an isolated elementlof The group™ acts discontinuously at
pointz € C,C being the extended complex plane. We consider a special discrete St +
iZ)/{+£ld}, whereZ is the ring of integer numbers. The elemgmrt " will be identified with—y.
The groupl’ has, within a conjugation, one maximal parabolic subgrodp Let us consider an
arbitrary integral operator with kernk(z, Z). Invariance of the operator is equivalent to fulfillment
of the conditionk(yz,yZ) = k(z,Z) for any z,Z € H® andy € PSL(2,C). So the kernel of the
invariant operator is a function of the geodesic distance betwessrd Z. It is convenient to
replace such a distance with the fundamental invariant of a pair of paint#) = |z— Z|?/yy,
thusk(z,Z) = k(u(z,Z)) . LetA; be the isolated eigenvalues of the self-adjoint extension of the
Laplace operator and let us introduce a suitable analytic funtzlﬂlo)mandrj2 =Aj—1 Itcan be
shown thath(r) is related to the quantitig(u(z yz)) by means of the Selberg transform. Let us
denote byg(u) the Fourier transform di(r), namelyg(u) = (2~ [ drh(r) exp(—iru).

Theorem 1. Suppose thal(r) is an even analytic function in the strjfir| < 1+ ¢ (¢ > 0), and
h(r) = O(1+|r|?)~2. For the special discrete gropl(2, Z +iZ)/{+1d} the Selberg trace formula
holds

h(rj) — du(z)k(u(z y2))
; | y—n{gr}li%frlgt;olic/

o [ Soas(s), , + "G s1) 1~ Co(0)
o0 2
= ol(\6) [ derrz h(r) — ;T/Rdrh(r)w(lﬁr/z). 4.1)

The first term in the right hand site of E4.1) is the contribution of the identity elemeMpl (I"\G)
is the (finite) volume of the fundamental domain with respect to the meakuyrey(s) is the
logarithmic derivative of the EuleF —function, andC is a computable real constartt4] |15,
16]. The functionS(s) is given by a generalised Dirichlet series, convergentier> 1, S(s) =
/2T (5= 1/2)[T'(S)] " Y o0 Y 0<d|q| I€] %, where the sums are taken over all pairs of the ma-

trix j::i C INw\lN/Tw. Also the poles of the meromorphic functi®&(s) are contained in the

regionJs< 1/2 and in the intervall/2,1].

5. Further analysis of the results

To summarize, we propose that our results can be applied in the following problems.
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Finite volume cosetd™\G/K and Killing spinors. In the previous sections we have discussed
supergravity solutions involving anti de Sitter and real hyperbolic space factors. Hyperbolic spaces
have infinite volume with respect to the Poincaré metric. Thus there are no normalizable modes
for any field configurations in hyperbolic spaces. On the other hand, non-empty bulk and boundary
field theories can be obtained by forming the coset spaces with topBiigY.

The hyperbolic manifold#N, as factors in solution (i) of Sec. 2, admit Killing spinors.
However, having the space forms (ii), (iii) of Sec. RS xH?xH2 xS*, AdS x H? x H3x S?, as
the solutions of supergravity theory, one can recognize that the fdiifordl?, H? x H® cannot
leave any unbroken supersymmetry. Indeed, the following result holds.

Proposition 1. (T. Friedrich [17]) A Riemannian spin manifoldM", g) admitting a Killing spinor
W # 0 with Killing numberp # O is locally irreducible.

Proof. Let the locally Riemannian product be in the fokt' = MX x MN=K_ Let X, 9" be vectors
tangent toMK and MN—K respectively, and, therefore, the curvature tensor of the Riemannian
manifold (MN, g) is trivial. Sincey is a Killing spinor the following equations hold (see also Eq.

2.7):

OxW=px g, 4°=[NN-1]'R
at each point of a connected Riemannian spin mani(MH,g), (5.1

whereR s a scalar curvature. Because/6fl) we have

OxOpW = W(0xY) - O+ 127 - X - =
(OxOy — Oy Ox — Ope g = 1239 X = X - ). (5.2)

The curvature tensd®(X,9") in the spinor bundle is related to the curvature tensor of the Rie-
mannian manifoldMN, g): R(X, ") = (1/4) 3.1 &jR(X, Y)e; - b, where{e;}'\_; is a orthogonal
basis in the manifold. Therefore E&.2) can also be written as

N
> &R )e+ [N(N-1)] ' R(XY ~ Y X)p=0. (5.3)
j=1

From Eqg. 6.3), we getR- X -9 - = 0, and moreoveX and?)” are orthogonal vectors. SinpeZ 0
(R# 0) it follows thaty = 0, hence a contradictioml]

Simple type 1IB supergravity backgrounds with D3 brane charge and constant dilaton are the
following: AdS x H? x S°, AdS x H® x S°. Like AdS x S? x S2, these spaces have no Killing
spinors and the solution is not supersymmeijc But this solution is regular everywhere (being
a direct product of Einstein spaces), amdcorrections can be made very small for sufficiently
large radius of compact part. Although non-supersymmetric, these spaces are an interesting setup
for string compactification, in particular, for the construction of conformal field theories. Other
compactifications can be obtained by replacing hyperbolic space fattdrg any Einstein space
X% of the same negative curvature, leading to the solufid& x X* x S%. In fact we have the
following statement:
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Proposition 2. (T. Friedrich [17]) Let (MN,g) be a connected Riemannian spin manifold and let
W be a non-trivial Killing spinor with Killing numbep # 0. Then(MN, g) is an Einstein space.

Proof. The proof easily follows from Proposition 2; inde@d", g) is an Einstein space of scalar
curvature given by Eq5(1). O

A relevant question is whether supersymmetry survives under the orbifolding by the discrete
groupl . This question could be addressed also to the fadtofEl? x H?), I'\ (H2 x H3). Perhaps
there are more complicate solutions involving real hyperbolic spaces, where some supersymmetries
are unbroken. However analysis of that problem is complicate and we leave it for another occa-
sion. In fact, supersymmetry guarantees the stability of the physical system. But its absence does
not necessarily implies instability. In general, a definite statement for the stability of supergrav-
ity solutions needs a study of the spectral properties of the operators, which are not well studied yet.

String-supergravity correspondence A version of duality states that string theory (or M the-
ory) compactified on spaces of the for S 1 x (M\HY) x SK defines aD—dimensional con-
formal field theory withSQK + 1) global symmetry. In addition, the correlation functions of
the conformal field theory are defined as follovi$,[19] (exp{ [ d°x PhoundargX) O(X) })crr =
Zstring(Pboundarg X)) , Where Zgying is the partition function of the string theory computed with
boundary values of the string fields, which act as sources of operators of conformal theory. In
the classical limit of supergravity the string partition function can be evaluated as folfigg; =
expg—Isa(®P)], where the solution of the equations of motion in the backgré\a@ , ; x (M\HN) x

SK with the boundary conditio®poundary has to be taken into account.

Following the lines of §] we mention here two interesting cases of supergravity solutions.
First, theD = 11 supergravity solution of the forAdS; x M? x S*. This model is dual to ® = 4
non-supersymmetric conformal field theory wii(5) global symmetry group. The supergravity
solution has M5-brane charge and one may expect the theory to be related to the six-dimensional
(2,0) or (1,0) conformal field theories. The second case is the eleven-dimensional supergravity
solutionAdS; x M3 x S*, and the type 11B solutiodd S x M? x S°. TheAdS; x M3 x S* solution
has M5 brane charge. Thus, the dual field theorys-a 2+ 1 conformal field theory associated
with the 6D (2,0) conformal theory, with an internal global symmetry grds@5). Finally the
later solution has D3 brane charge and it should be dual to §¢gme0 D = 1+ 1 conformal field
theory related to\' = 4 D = 3+ 1 super Yang-Mills theory.

Results on the holographic principle The backgrounds considered in previous sections can be
used for the construction of ne\{ = 0 conformal field theories by holography. According to the
holographic principle, there exist strong ties between certain field theories on a manifold (“bulk
space”) and on its boundary (at infinity). A few mathematically exact results relevant to that pro-
gram are the following. The class of Euclidean AdPaces which we have considered here are
quotients of the real hyperbolic spaé by a Schottky group. The boundaries of these spaces can
be compact oriented surfaces with conformal structure (compact complex algebraic curves).

In [20], a principle associated with the Euclidean Ad#®lography has been established. The
bulk space is there a modular curve, which is the global quotient of the hyperbolic Fifabg
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a finite index group[”, of G = PSL(2,Z). The boundary at infinity is theR'(R). LetM be a
coset spacé = N'\G. Then, the modular curvi := '\H? can be presented as the quotient
Xr = G\ (H? x M); its non-commutative boundary (in the sense of ConBg fis theC* — algebra
C(PY(R) x M)><G, Morita equivalent taC(P*(R))>«I" [22,120]. The results which have been
regarded as manifestations of the holography principleZdje [

e There is a correspondence between the eigenfunctions of the transfer operamat the
eigenfunctions of the Laplacian (Maas wave forms).

e The cohomology classes ki (Xr,cuspsR) can be regarded as elements in the cyclic coho-
mology of the algebr&(P*(R) x M)><G. Cohomology classes of certain geodesics in the
bulk space correspond to projectors in the algebra of observables on the boundary space.

e An explicit correspondence exists between a certain class of fields in the bulk space (Mellin
transforms of modular forms of weight two) and the class of fields on the boundary.

Other constructions associated with the symmetric space can be considered for convex cocompact
groups. In fact, leBX be a geodesic boundary of the symmetric spdcef a real, rank one,
semisimple Lie grougs. If I C G is a discrete torsion-free subgroup, theh-aequivalent de-
composition,dX = QU A, can be constructed, whefeis the limit set ofl. The subgroup is

called convex cocompact If\X U Q is a compact manifold with boundar23]. The geometry
boundary ofHN in half-space Poincaré modeldsHN = RN-1U . If I" is convex cocompact and
torsion free, then the orbit spacg, = N\ HN, may be viewed as the interior of a compact manifold

with boundary, namely the Klein manifold for, X = (M\HN) U (M\Q(I")), so that the boundary at
infinity is given byd.Xr = 0X =\ Q(I).
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