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Field theories whose space-time symmetries are governed by theκ-deformed Poincaré algebra

exhibit peculiar properties which can be used to study physics at very short scales. Those proper-

ties also rise interesting questions about how to quantize such theories. We present some results

on the quantization ofκ-deformed field theories which can shed some light on those questions.
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Theκ-deformed Poincaré algebra is a Hopf algebra, alternatively known as quantum algebra or
quantum group, obtained by contracting a deformed anti-de-Sitter algebra [1, 2, 3]. The parameter
κ is a positive real number with the dimension of mass, which establishes a fundamental scale
for the deformed Poincaré algebra. In the limitκ → ∞ the deformation disappears and the usual
Poincaré algebra is obtained from itsκ-deformed version. The first Casimir invariant of theκ-
deformed Poincaré algebra gives rise to the following dispersion relation

P2−
(

2κ sinh
P0

2κ

)2

= −m2 , (1)

whereP0 andP are the energy and momentum generators in the algebra andm2 is an invariant
scalar labeling the considered representation. The usual relativistic dispersion relation is recovered
from (1) in the limitκ → ∞. Theκ-deformation may provide a theoretical framework to describe
physics with a new fundamental scale in which violations of usual Poincaré symmetries can be
expected. Actually, it has been shown that a single deformation of usual relativistic dispersion rela-
tion can explain experimental paradoxes presently facing the astrophysics community [4] (see [5]
for a review on the subject and its relation withκ-deformation). It is plausible to expect violations
of usual Poincaré symmetry at very large scales of energy or very small scales of length, which
faces us with the challenge of constructing quantum field theories whose space-time symmetries
are governed by theκ-deformed Poincaré algebra. Aκ-deformed quantum field theory has been
proposed in the framework of non-commutative space-time by Kosinski, Lukierski and Maslanka
[6]. They considered a self-interacting theory and obtained as a consequence of theκ-deformation
that four-momentum is not conserved at the vertexes. Here we want to considerκ-deformed quan-
tum field theories in usual space-time with no interactions but eventually under external influences
simulated by boundary conditions. The construction of complete theories of quantumκ-deformed
fields is far from trivial and we want to present here some results in this direction, discussing the
peculiarities of such theories that can be used not only to study new physics but also rise interesting
questions about their quantization.

In a κ-deformed field theory the equations of motion for free fields must satisfy the dispersion
relation (1) dictated by theκ-deformed invariance of space-time. An example of such equations
was proposed for aκ-deformed scalar field [2],

[
∇ 2−

(
2κ sin

∂0

2κ

)2

−m2

]
φ(x) = 0 . (2)

which can be written as

(∇ 2−∂2
q−m2)φ(x) = 0 , (3)

by using the deformation parameterq = (2κ)−1 and the differential operator

∂q = q−1sin(q∂0) . (4)

Other examples are provided by aκ-deformed Dirac field [2],

(iγi∂i − iγ0∂q−m)ψ(x) = 0 , (5)
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whereγi andγ0 are usual gamma matrices, and by aκ-deformed Maxwell field [7],

∇ ·E = 0 , ∇ ×E = −∂qB , ∇ ·B = 0 , ∇ ×B = ∂qE . (6)

Let us consider aκ-deformed scalar field for simplicity and briefly describe its canonical quan-
tization [7], in order to appreciate the peculiarities which follows from theκ-deformation. This field
can be described by the action

S(φ) =
∫

Ω
d4x L(φ(x), ∂̄φ(x)) , (7)

where∂̄φ(x) = (∂qφ, ∇φ ) and the Lagrangian density is given by the expression

L(φ(x), ∂̄φ(x)) =
1
2
(∂qφ∂qφ− ∇φ · ∇φ )− 1

2
m2φ2 , (8)

which differs from the one proposed by Lukierski, Nowicki and Ruegg [2] by surface terms. The
action principle requires that the virtual variations of (7) depends only on surface terms and from
this principle we obtain the equations of motion (3) by making use of the following lemma

ϒ∂qΞ = ∂0

[
−1

q

∞

∑
n=0

(−1)n
q2n+1

(2n+1)!

2n+1

∑
p=1

(−1)p(∂2n+1−p
0 ϒ∂p−1

0 Ξ)

]
− (∂qϒ)Ξ , (9)

whereϒandΞ are arbitrary functions of space-time.
Since theκ-deformed Lagrangian density (8) does not depend on space-time explicitly, we can

use Noether’s theorem to obtain a conserved energy momentum tensor [7]. Here we are interested
only in theκ-deformed energy that follows from this tensor, namely

P0 =
∫

d3x (Π0∂0φ−L) (10)

where we have used the differential operator

Π0 = −1
q

∞

∑
n=0

(−1)n q2n+1

(2n+1)!

2n+1

∑
p=1

(−1)p∂2n+1−p
0

∂L
∂(∂qφ)

∂p−1
0 . (11)

The quantization of thisκ-deformed field can be done in the usual two steps. In the first we
promote the fieldφ(x) to an operator

φ(x) =
∫

d3p η(p)
[
a(p)e−ip·x +a†(p)eip·x] , (12)

whereη(p) is a normalization factor, the plane waves satisfy the equations of motion (3) by obeying
the dispersion relation that follows from (1),

p0 = ω(p) =
1
q

sinh
(

q
√

p2+m2
)

, (13)

and the amplitudesa(p) anda†(p) are operators obeying the canonical commutation relations

[a(p),a(p′)] = [a†(p),a†(p′)] = 0 , [a(p),a†(p′)] = δ(p−p′) . (14)
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In the second step of quantization we impose on the field the Heisenberg equation of motion

∂0φ= i[P0,φ] , (15)

whereP0 is the operator obtained by quantization of theκ-deformed energy (10).
From the form of equations (14) and (15) the normalization factor in (12) is fixed asη(p) =

[2(2π)3 sinh(2qω(p))/2q]−1/2. The consistency of the quantization procedure can be verified by
applying to both sides of the Heisenberg equations (15) the differential operator∂[

q obtained from
the factorization∂q = ∂[

q ∂0 of the differential operator (4).
By substituting the expansion (12) into (10) and using the commutation relations (14) we

obtain for theκ-deformed energy the expression

P0 =
∫

d3pω(p)
(

1
2

+a†(p)a(p)
)

, (16)

whereω(p) is given by theκ-deformed dispersion relation (13). From this expression we may
define the vacuum energy of theκ-deformed field (in box normalization) as the quantity

E0 = ∑
p

1
2

ω(p) = ∑
p

1
2q

senh−1(q
√

p2+m2) . (17)

The simplicity of the result (17) is not only welcome but also remarkable if we follow all the
calculations which leads to it. For theκ-deformed electromagnetic field it can be derived an analog
expression including the sum over polarizations. Such an expression can be used to obtain the
Casimir energy in presence of conducting parallel plates [8] (for a review on the subject of Casimir
effect see.e.g., [9, 10]). As a matter fact, the sum over half frequencies expression was assumed to
be true in order to obtain the Casimir energy for theκ-deformed electromagnetic field [11, 12] and
the result can be written as [12]

Eq(a) = − −`2

4π2a3

∞

∑
n=1

1
n2

∫ a/q

0
dy

(
y+

1
2n

)
e−2ny

√
1− (qy/a)2

, (18)

wherea is the separation between the plates and` the side of each plate, which is assumed to be a
square with̀ >> a.

From the field expression (12) and the commutation relations (14) we obtain

[φ(x),φ(x′)] = i ∆q(x−x′) , (19)

where

∆q(x−x′) =
−i

(2π3)

∫
d3p

sinh2qω(p)/q

[
e−ip·(x−x′)−eip·(x−x′)

]
. (20)

is theκ-deformed Pauli-Jordan function proposed by Lukierski, Nowicki and Ruegg [2]. From (19)
we obtain

[φ(x, t),π2q(x′, t)] = i δ(x−x′) (21)

where

π2q(x) = ∂2qφ(x) . (22)
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Several remarks are in order concerning the above formalism. First of all, we should notice
that the introduction of a scale parameter into the space-time symmetries throughκ-deformation
leads us to a field described by a Lagrangian density (8) of infinite order in time derivative, due to
the presence of the infinite order differential operator (4). The corresponding equation of motion
(3) is also of infinite order in time derivative and cannot be used to construct solution from a finite
set of initial data. In this respect, however, two facts must be taken into consideration. The first is
that the equation of motion (3) fulfills its fundamental purpose of defining the set of all possible
motions of the field. It is given by the kernel of the operator∇ 2− ∂2

q−m2 in the space of smooth
functions. By substituting any smooth function in equation (3) it can be unequivocally determined
if it belongs or not to this kernel. We could determine that plane waves with dispersion relation (13)
belongs to this kernel and so all field operators (12) of rapid decrease at infinity. The second fact
is that a drastic change of scale may give rise to a change in the deterministic features of theories,
as when we change 8 orders of magnitude in length from the realm of classical mechanics to the
scale of quantum mechanics. Ifκ-deformation is supposed to describe physics at very small scale,
say the Planck scale, it is plausible to expect different deterministic properties in the theory due
to a change of about 17 orders of magnitude from the scale of usual quantum field theories to this
scale. Another consequence of the infinite order of the theory is that surface terms in the action (7)
depend on the values of all time derivatives of the field.

Another important peculiarity of theκ-deformed theory is that different operators play the
role of the field conjugate toφ, depending on the part of the theory into consideration. In the
equal time canonical commutation relation (21) the conjugate field is given by the field operator
π2q defined by (22), while in the expression (10) is given by the differential operatorΠ0 with field
operators as coefficients, as defined in (11). We should add that the Legendre transform conjugate
variableπq(x) = ∂L/∂(∂qφ(x)) does not satisfy the equal time canonical commutation relation,
[φ(x, t),πq(x ′)] 6= δ(x− x ′)), nor the Legendre transform of the Lagrangian will give the operator
P0 obtained in (10) from Noether’s theorem. However, all the different operators playing some of
the roles of a conjugate field have the same limit when the deformation disappears, limq→0 π2q =
limq→0 πq = limq→0 Π0 = ∂0φ. After all, it is important to notice that a procedure along the essential
lines of canonical quantization can be followed to obtain a quantizedκ-deformed field.

Let us now add to the above formalism a new result concerning its Green’s functions. We
may first verify that by requiring from vacuum state the propertya(p)|0〉 = 0 the propagator
〈0|T(φ(x)φ(x′))|0〉 is not a Green function of the theory. On the other hand, the amplitude
〈0|T(χ(x)φ(x′))|0〉, where

χ(x) = q∂0 cot(q∂0)φ(x) , (23)

is a Green’s function of the theory

(∇ 2−∂2
q−m2)〈0|T(χ(x)φ(x′))|0〉 = δ(x−x′) . (24)

But none of those functions is theκ-causal Green’s functionGq(x,x′), defined as the inverse of the
differential operator∇ 2−∂2

q−m2+ iε, whereε is a small positive quantity.

Let us now turn to some results that can be obtained by functional quantization of aκ-deformed
theory. The effective action for theκ-deformed free field is given in Schwinger proper-time repre-
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sentation by [13]

W = −1
2

∫ ∞

0

ds
s

Tre−isH , (25)

whereH is the proper-time Hamiltonian determined from the Casimir invariant (1) and given by

H = P2−
(

2κ sinh
P0

2κ

)2

+m2 . (26)

From these expressions it can be shown that (in box normalization)

W = −T ∑
p

1
2

ω(p)+ i
−T
πκ ∑

p

1
4

ω(p)2 , (27)

whereT is a large elapsed time from remote past to distant future and the frequenciesω(p) are
given by theκ-deformed dispersion relation (13). The expression of the real part of this effective
action as proportional to the vacuum energy (17) is an expected result, while the imaginary part is a
contribution peculiar from theκ-deformation. In free space both real and imaginary part of thisκ-
deformed effective action can be subtracted out as spurious contribution. However, in the presence
of boundary conditions they give rise to observables. From the real part we obtain the Casimir
energy related to the given boundary conditions and from the imaginary part we get the creation
rate of field excitations of the field in the presence of the boundary conditions. Both quantities
have been obtained directly from the proper-time representation (25) of the effective action [14] in
the case of theκ-deformed scalar field under Dirichlet boundary conditions on two large parallel
squares of sidè and separationa. They are given by

W =
T à 2

16π2 a4

∞

∑
n=1

∫ ∞

0
dσσe−n2σ−(2κ2+m2)a2/σ

√
4(aκ)2

πσ
[
πI0(2(aκ)2/σ)+ iK0(2(aκ)2/σ)

]
. (28)

In the limit κ → ∞, the real part of this expression gives the corresponding Casimir energy of the
usual scalar field. In the same limit the imaginary part goes to zero. On the other hand, in the
limit a → ∞ both real and imaginary parts go to zero,i.e., the Casimir energy and the excitation
creation rate go to zero when the confining boundary conditions are withdrawn. The result (28)
can be applied to cosmological considerations [14]. If we consider an universe with dimensions
of the order ofa in its early stages, the imaginary part of (28) provides a mechanism of creation
of matter (or radiation in the casem= 0) out of the confinedκ-deformed space. The greater the
productaκ, the smaller the creation rate. The mechanism of creation becomes negligible for a size
a large enough. We may also consider the possibility that theκ-deformation also decreases with
time in order to eliminate a significant creation rate.

The result for the effective action (28) shows that aκ-deformed field presents a mechanism of
creation of excitations which does not appear in the canonical quantization in a obvious way, and
which prevents us of postulating the conditiona(p)|0〉 = 0 when boundary conditions are present.
As a matter of fact, by taking the vacuum expectation value of the operatorP0 in (16) we should
obtain−W /T with W given by the expression (28). In order to obtain from (16) the imaginary
part that appears in this expression we would need a very precise prescription for the vectora(p)|0〉
to be added by hand to the canonical quantization method. This consideration favors the functional
method of quantization in face of the canonical for the case ofκ-deformed fields. By adding to this
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observation the peculiarities of the canonical quantization discussed above we may conclude that
further investigations are necessary to know precisely how to quantizeκ-deformed field theories.

We acknowledge useful conversations with M. Neves. C. F. thanks CNPq for partial financial
support.
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