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The strong-coupling regime in quantum field theory is one of the unsoh@agms of the-
oretical physics of the last century. There are many situations wherbam® account for non-
perturbative coupling regions, and to discuss the physics of the stroogpled systems.

In this paper we present a method for calculating the partition function ansl¢heholtz
free energy for a single oscillator with the anharmoﬁf_pix“(r) term in the strong-coupling regime
up to the order\% [1]. For simplicity we are assuming that our system is one-dimensional and
is in thermal equilibrium with a reservoir at temperat@e. We are working in the imaginary
time formalism and making use of the Kubo-Martin-Schwinger (KMS) conditin To find the
partition function and the Helmholtz free energy, our approach consists icotinbination of two
techniques used currently in the literature: the strong-coupling expaf8i¢#] [5] [6] and the
spectral zeta function method [7].

The basic idea of the strong-coupling expansion in approach in Eucligddriheory is the
following: in a formal representation for the generating functional of deteSchwinger functions
of the theoryZ(h), we treat the Gaussian part of the action as a perturbation with respeet to th
remaining terms of the functional integral. Therefore we are developingerturbative expansion
around the independent-value generating functi@aéh), where different points of the Euclidean
space are decoupled [8] [9][10]. The fundamental problem of tbagtcoupling expansion is how
to give meaning to the independent-value generating functional. A nagvefuscontinuum limit
of the lattice regularization for the independent-value generating funttieads to a Gaussian
theory, where we simple make use of the central limit theorem. The fundanmatification
which allow us to avoid the central limit theorem is a change in the measure in ricgdinal
integral [11] [12] [13].

Let us consider a one-dimensional quantum mechanical system. The pdtftation for the
system assuming that it is in thermal equilibrium with a reservoir at tempefitdris given by

Z(B) = / [dX(T) exp! / ot (}m(%)ZW(x(r)))] )
X(0)=x(B) o \2 'dt ’
where in the functional integral we require tiét) is periodic with period3, i.e.,X(T) = X(T+B).

As usual, we define the generating functiodgB; h) introducing an external sourd€t), and it

is convenient to considé(t) to be pure imaginary. It is important to define the modified kernel
K(w,0;T1—T1') by the equation

2
K(w,o;1—T) = (—%Jr(l—c)(&) 3(t1-1), (2)

wherew is the frequency and is a complex parameter defined in the regior Re (o) < 1.
The choice of a suitable will simplify our calculations in some situations. For simplicity, we are
choosingn? = 1.

To find the partition function for the anharmonic oscillator in the strong-cogpkgime it is
natural to use the strong-coupling perturbative expansion. We gatltbeihg formal representa-
tion for the generating functional at finite temperaté(g; h):

B B o 0
Z(B;h) :exp<—:—2L/0 dt/o dT’mK(w,o;T—r’)W> Q(B,o; h), (3)
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whereQ(f, o; h), the new independent-value functional integral, is given by

' B 1 -5, A
QB.oih = [  (axv]exp| [ dt (~Zouem) - @ +hox® ) | @)
X(0)=X(B) 0 2 4!
and the modified kernéd (w, 0;T —1') was defined by Eq.(2). The fact@( is a normalization that
can be found using th&(B,o;h)|n—o = 1. Note that we split the quadratic part in the functional
integral, which is proportional to the frequency squared, into two pars;contributes together
with the derivative term in the action as the perturbation, and the otherdpdhe independent-
value generating functional. In the leading order, we haveztfth) can be written as

B B
Z(B;h) = (1—:—;/0 dr/o dr’éh?T)K(w,o;r—T’)ﬁ;T,Q Q(B,o; h). (5)

To evaluate IiZ(B; h), note that we have two steps to follow. The first one is to give meaning to the
independent-value generating-functional, and the second one is taneguand renormalize the
kernelK(w,o; T — ') integrated over the volum@, 3]. Note that the parameterwas introduced
only to simplify our calculations in some situations. Thereforean be complex if we are able to
work in all order of perturbation theory. The generating functionakdus depends on the value
for 0. Since we concentrate in the leading order, some care has to be takement@e&eomplex
generating functional. A simple way to avoid the problem is assume that thengtera is real.
Therefore we will impose that Irfo) = 0.

Since we are mainly interested in presenting the partition function, we cansdama that
the external source is constant ité1) = h. Using the cumulant expansion idea, which relates the
mean of a exponential to the exponential of means, after some simple calcilagambtain

1 aZQ(B,o;h)< 1 1d

(B,o;h)  oh? ‘§+§d—53(5)lﬁo>, (6)

InZ(Bih) = 5

where((s) is the spectral zeta function associated with the oper@oﬂi2 +(1-o0) coz) This
eliptic operator has a complete set of orthonormal eigenfuncigiig and associated eigenvalues
an. Using the boundary conditiong(0) = x,(B), we have that the spectral zeta function is given

by
o 2 -S
SINCE [(%””) +<1—o>w2] . ™

dr2 n=—oo

Here, it is useful to define the Epstein-Hurwitz zeta function in the complexeai.e., the
function{(s,v) by:

U(s,v) = i (N?4v2)7S v

n=—oo

20 (8)
Note that in the original Hurwitz zeta function it appearisistead ofr?, while for the true Epstein
zeta function na-independent term should appear.

It is not difficult to write the spectral zeta function in terms of the Epsteinwildrzeta func-
tion. We have

2s
s = () (svITaG0)). ©
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where{(s,v), is the Epstein-Hurwitz zeta function. Using the analytic extention of the Epstein
Hurwitz zeta function [14], is not difficult to show that

{(s,V)s=0=0

and

(%Z(s,v)@o = —2In(2 sinhrw).
Since we are interested in calculating the derivative of the spectral zettdn at the origin of the
complexs plane, we have

10 1 d /B\® 1/B\*®0d
éa—sz—%u_o)uﬂshoz(E“S’V)d—s(ﬁ) +2(20) a—s“S’V)) o (10)

Using our results in Eqg.(10) we obtain

%aszgf+(lo)w2(s)|$0 =—In !(2 sinh<(1 0)%[3) ] . (11)

To complete our work we have to calculate the second derivative for tlepamtlent-value
generating function with respect to the source. We would like to stress thatewsing Klauder’s
result, as the formal definition of the independent-value generating fuattiterived for scalar
fields in ad-dimensional Euclidean space. It is important to point out that in Klaudersation
for the independent-value model a result was obtained which is well ddbnall functions which
are square integrable R i.e., h(x) eL2(R"). This observation allow us to conclude that we need
also to use a normalization in the situation that we are investigating. It is possihewuothat the
independent-value generating function can be written as [11]

B 0
Q(B,o;h) :exp[—2—1[3/0 dr/oo%T(l—cos(hu))exp<—%ow2u2—%u“)]. (12)

In order to studyQ(B, o; h), let us definee(w, g, A; h) given by
du

w [l

E(w,0,A;h) = / (1— cos(hu))exp(—%ow u —%u“). (13)

Now let use the fact that the parameter can be choosen in such a way that the calculations
becomes tractable. Analysing only the independent-value generatirtgofuaddt is not possible to
write Q(B, o; h) in a closed form even in the case of constant external source. On®wayain a
closed expression is to choose-= 0. Therefore, using a series representation foxca® have

% u). (14)

E(w,0,A; h)yco—zz th/ duPLexp(—
At this point let us use the following integral representation for the Gammaium[15]

/m dx )~ Lexp(— ) = %)u_% r (%) , Re(y) >0 Rev)>0 p>0. (15)
0
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Using the result given by Eq.(15) in Eqg.(14) we have

00 h2k

E(w,0,\:h)|g—o = K)—. 16
(©.0NMlo-0= 3 ok (16)

whereg(k) = %((;lg!k (4!)§F('§‘). Substituting the Eq.(16) in Eq.(12) we obtain that the independent-

value generating functioQ(3, o; h)|s—o can be written as

)loco = exp|— = [Tat 3 g
Q<B,o,h>\o_o—exp[ 5 dfk;g(kks]' a7)

It is easy to calculate the second derivative for the independent-valuerating function with
respect tdh. Note thatQ(B, o;h)|,_,_, = 1. Thus we have

0%Q(B,o;h) B \/ﬁ
T%:o:o— an (18)

Substituting the result obtained from the generalized zeta-function metverlgy Eq.(11) (choos-
ing o = 0) and Eq.(18) in Eq.(6) we have thatA(B) is given by

InZ(B) = \/glg —In <Zsinl'(%B)> ] . (19)

Therefore the patrtition function for the single oscillator is

1 3
2

<l

e
(ZSinP(%B)

Other thermodynamics quantities that we are able to find are the Helmholtz freg emel the
mean energy. The Helmholtz free energy is given by

JOREL

Finally the mean energy is defined By= —% In Z(B)|h—o. Therefore we have

3n|w w
E:\/;IZJremB—l]' (22)
The picture emerging from the previous discussion is the following: in thegtcoupling
perturbative expansion we may split the problem of defining the generathmagional into two
parts: how to define precisely the independent-value generating fualctiod how to go beyond
the independent-value approximation, taking into account the perturbation@ur results show
that the strong-coupling perturbative expansion, in combination with alyteneegularization

procedure, is a useful method to compute global quantities, as the Helmhelterfeegy, in the
strong-coupling regime.

Z(B) = (20)

)

1 w3 1 —Bw
ot Ei (e )] (21)
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In conclusion, in this article we studied the strong-coupling regime in one-diioresd models,

after analytic continuation to imaginary time. One-dimensional models are verjesaygiem for
which we can apply our method in obtaining thermodynamics quantities in the leardiegin the
inverse of coupling constant. We calculate the partition function and the Hékrfhee energy
for the anharmonic oscillator, using the strong-coupling perturbativareipn and the spectral
zeta-function method. It was possible to present expressions up todbe%r for the partition
function and the other thermodynamic quantities derived from the the Helmhedtzhergy.
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