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The strong-coupling regime in quantum field theory is one of the unsolved problems of the-
oretical physics of the last century. There are many situations where onehas to account for non-
perturbative coupling regions, and to discuss the physics of the stronglycoupled systems.

In this paper we present a method for calculating the partition function and theHelmholtz
free energy for a single oscillator with the anharmonicλ

4! x4(τ) term in the strong-coupling regime
up to the order 1√

λ
[1]. For simplicity we are assuming that our system is one-dimensional and

is in thermal equilibrium with a reservoir at temperatureβ−1. We are working in the imaginary
time formalism and making use of the Kubo-Martin-Schwinger (KMS) condition [2]. To find the
partition function and the Helmholtz free energy, our approach consists in the combination of two
techniques used currently in the literature: the strong-coupling expansion[3] [4] [5] [6] and the
spectral zeta function method [7].

The basic idea of the strong-coupling expansion in approach in Euclideanfield theory is the
following: in a formal representation for the generating functional of complete Schwinger functions
of the theoryZ(h), we treat the Gaussian part of the action as a perturbation with respect to the
remaining terms of the functional integral. Therefore we are developing our perturbative expansion
around the independent-value generating functionalQ0(h), where different points of the Euclidean
space are decoupled [8] [9] [10]. The fundamental problem of the strong-coupling expansion is how
to give meaning to the independent-value generating functional. A naive use of a continuum limit
of the lattice regularization for the independent-value generating functional leads to a Gaussian
theory, where we simple make use of the central limit theorem. The fundamentalmodification
which allow us to avoid the central limit theorem is a change in the measure in the functional
integral [11] [12] [13].

Let us consider a one-dimensional quantum mechanical system. The partition function for the
system assuming that it is in thermal equilibrium with a reservoir at temperatureβ−1 is given by

Z(β) =
∫

x(0)=x(β)
[dx(τ)] exp

[

−
∫ β

0
dτ

(

1
2

m(
dx
dτ

)2 +V(x(τ))
)

]

, (1)

where in the functional integral we require thatx(τ) is periodic with periodβ, i.e.,x(τ) = x(τ+β).
As usual, we define the generating functionalZ(β;h) introducing an external sourceh(τ), and it
is convenient to considerh(τ) to be pure imaginary. It is important to define the modified kernel
K(ω,σ;τ− τ′) by the equation

K(ω,σ;τ− τ′) =

(

− d2

dτ2 +(1−σ)ω2
)

δ(τ− τ′), (2)

whereω is the frequency andσ is a complex parameter defined in the region 0≤ Re(σ) < 1.
The choice of a suitableσ will simplify our calculations in some situations. For simplicity, we are
choosingm2 = 1.

To find the partition function for the anharmonic oscillator in the strong-coupling regime it is
natural to use the strong-coupling perturbative expansion. We get the following formal representa-
tion for the generating functional at finite temperatureZ(β;h):

Z(β;h) = exp

(

−1
2

∫ β

0
dτ

∫ β

0
dτ′

δ
δh(τ)

K(ω,σ;τ− τ′)
δ

δh(τ′)

)

Q(β,σ; h), (3)
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whereQ(β,σ;h), the new independent-value functional integral, is given by

Q(β,σ;h) = N

∫

x(0)=x(β)
[dx(τ)] exp

[

∫ β

0
dτ

(

−1
2

σω2x2(τ)− λ
4!

x4(τ)+h(τ)x(τ)
)

]

, (4)

and the modified kernelK(ω,σ;τ−τ′) was defined by Eq.(2). The factorN is a normalization that
can be found using thatQ(β,σ;h)|h=0 = 1. Note that we split the quadratic part in the functional
integral, which is proportional to the frequency squared, into two parts; one contributes together
with the derivative term in the action as the perturbation, and the other appears in the independent-
value generating functional. In the leading order, we have thatZ(β;h) can be written as

Z(β;h) =

(

1− 1
2

∫ β

0
dτ

∫ β

0
dτ′

δ
δh(τ)

K(ω,σ;τ− τ′)
δ

δh(τ′)

)

Q(β,σ; h). (5)

To evaluate lnZ(β;h), note that we have two steps to follow. The first one is to give meaning to the
independent-value generating-functional, and the second one is to regularize and renormalize the
kernelK(ω,σ; τ− τ′) integrated over the volume[0,β]. Note that the parameterσ was introduced
only to simplify our calculations in some situations. Thereforeσ can be complex if we are able to
work in all order of perturbation theory. The generating functional does not depends on the value
for σ. Since we concentrate in the leading order, some care has to be taken to prevent a complex
generating functional. A simple way to avoid the problem is assume that the parameterσ is real.
Therefore we will impose that Im(σ) = 0.

Since we are mainly interested in presenting the partition function, we can also assume that
the external source is constant i.e.h(τ) = h. Using the cumulant expansion idea, which relates the
mean of a exponential to the exponential of means, after some simple calculations we obtain

lnZ(β;h) =
1

Q(β,σ;h)

∂2Q(β,σ;h)

∂h2

(

−1
2

+
1
2

d
ds

ζ(s)|s=0

)

, (6)

whereζ(s) is the spectral zeta function associated with the operator
(

− d2

dτ2 +(1−σ)ω2
)

. This

eliptic operator has a complete set of orthonormal eigenfunctionsxn(τ) and associated eigenvalues
an. Using the boundary conditionsxn(0) = xn(β), we have that the spectral zeta function is given
by

ζ− d2

dτ2 +(1−σ)ω2(s) =
∞

∑
n=−∞

[

(

2πn
β

)2

+(1−σ)ω2

]−s

. (7)

Here, it is useful to define the Epstein-Hurwitz zeta function in the complex plane s, i.e., the
functionζ(s,ν) by:

ζ(s,ν) =
∞

∑
n=−∞

(n2 +ν2)−s
, ν2

> 0. (8)

Note that in the original Hurwitz zeta function it appearsn instead ofn2, while for the true Epstein
zeta function non-independent term should appear.

It is not difficult to write the spectral zeta function in terms of the Epstein-Hurwitz zeta func-
tion. We have

ζ− d2

dτ2 +(1−σ)ω2(s) =

(

β
2π

)2s

ζ
(

s,
√

1−σ(
ωβ
2π

)

)

, (9)
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whereζ(s,ν), is the Epstein-Hurwitz zeta function. Using the analytic extention of the Epstein-
Hurwitz zeta function [14], is not difficult to show that

ζ(s,ν)|s=0 = 0

and
∂
∂s

ζ(s,ν)|s=0 = −2ln(2 sinhπν).

Since we are interested in calculating the derivative of the spectral zeta function at the origin of the
complexs plane, we have

1
2

∂
∂s

ζ− d2

dτ2 +(1−σ)ω2(s)|s=0 =

(

1
2

ζ(s,ν)
d
ds

(

β
2π

)2s

+
1
2

(

β
2π

)2s ∂
∂s

ζ(s,ν)

)

|s=0. (10)

Using our results in Eq.(10) we obtain

1
2

∂
∂s

ζ− d2

dτ2 +(1−σ)ω2(s)|s=0 = − ln

[

(2 sinh

(

(1−σ)
ωβ
2

)

]

. (11)

To complete our work we have to calculate the second derivative for the independent-value
generating function with respect to the source. We would like to stress that we are using Klauder’s
result, as the formal definition of the independent-value generating functional derived for scalar
fields in ad-dimensional Euclidean space. It is important to point out that in Klauder’sderivation
for the independent-value model a result was obtained which is well defined for all functions which
are square integrable inRn i.e., h(x) εL2(Rn). This observation allow us to conclude that we need
also to use a normalization in the situation that we are investigating. It is possible toshow that the
independent-value generating function can be written as [11]

Q(β,σ;h) = exp

[

− 1
2β

∫ β

0
dτ

∫ ∞

−∞

du
|u| (1−cos(hu))exp

(

−1
2

σω2u2− λ
4!

u4
)

]

. (12)

In order to studyQ(β,σ;h), let us defineE(ω,σ,λ;h) given by

E(ω,σ,λ;h) =
∫ ∞

−∞

du
|u| (1−cos(hu))exp

(

−1
2

σω2u2− λ
4!

u4
)

. (13)

Now let use the fact that theσ parameter can be choosen in such a way that the calculations
becomes tractable. Analysing only the independent-value generating functional it is not possible to
write Q(β,σ;h) in a closed form even in the case of constant external source. One wayto obtain a
closed expression is to chooseσ = 0. Therefore, using a series representation for cosx, we have

E(ω,σ,λ;h)|σ=0 = 2
∞

∑
k=1

(−1)k

(2k)!
h2k

∫ ∞

0
duu2k−1exp(− λ

4!
u4). (14)

At this point let us use the following integral representation for the Gamma function [15]

∫ ∞

0
dxxν−1exp(−µxp) =

1
p

µ−
ν
p Γ

(

ν
p

)

, Re(µ) > 0 Re(ν) > 0 p > 0. (15)
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Using the result given by Eq.(15) in Eq.(14) we have

E(ω,σ,λ;h)|σ=0 =
∞

∑
k=1

g(k)
h2k

λ k
2

, (16)

whereg(k) = 1
2

(−1)k

(2k)! (4!)
k
2 Γ( k

2). Substituting the Eq.(16) in Eq.(12) we obtain that the independent-
value generating functionQ(β,σ;h)|σ=0 can be written as

Q(β,σ;h)|σ=0 = exp

[

− 1
2β

∫ β

0
dτ

∞

∑
k=1

g(k)
h2k

λ k
2

]

. (17)

It is easy to calculate the second derivative for the independent-value generating function with
respect toh. Note thatQ(β,σ;h)|h=σ=0 = 1. Thus we have

∂2Q(β,σ;h)

∂h2 |h=σ=0 =

√

3π
8λ

. (18)

Substituting the result obtained from the generalized zeta-function method given by Eq.(11) (choos-
ing σ = 0) and Eq.(18) in Eq.(6) we have that lnZ(β) is given by

lnZ(β) =

√

3π
8λ

[

1
2
− ln

(

2sinh(
ωβ
2

)

)

]

. (19)

Therefore the partition function for the single oscillator is

Z(β) =
e

1
2

√
3π
8λ

(

2sinh(ωβ
2 )

)

√
3π
8λ

. (20)

Other thermodynamics quantities that we are able to find are the Helmholtz free energy and the
mean energy. The Helmholtz free energy is given by

F(β) =

√

3π
8λ

[

− 1
2β

+
ωβ
2

+
1
β

ln
(

1−e−βω
)

]

. (21)

Finally the mean energy is defined byE = − ∂
∂β ln Z(β)|h=0. Therefore we have

E =

√

3π
8λ

[

ω
2

+
ω

eωβ −1

]

. (22)

The picture emerging from the previous discussion is the following: in the strong-coupling
perturbative expansion we may split the problem of defining the generatingfunctional into two
parts: how to define precisely the independent-value generating functional and how to go beyond
the independent-value approximation, taking into account the perturbation part. Our results show
that the strong-coupling perturbative expansion, in combination with an analytic regularization
procedure, is a useful method to compute global quantities, as the Helmholtz free energy, in the
strong-coupling regime.
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In conclusion, in this article we studied the strong-coupling regime in one-dimensional models,
after analytic continuation to imaginary time. One-dimensional models are very simple system for
which we can apply our method in obtaining thermodynamics quantities in the leadingorder in the
inverse of coupling constant. We calculate the partition function and the Helmholtz free energy
for the anharmonic oscillator, using the strong-coupling perturbative expansion and the spectral
zeta-function method. It was possible to present expressions up to the order 1√

λ
for the partition

function and the other thermodynamic quantities derived from the the Helmholtz free energy.
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