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1. Introduction

According to the teleparallel equivalent of general relativity, curvature and torsion are alter-
native ways of describing the gravitational field, and consequently related to the same degrees of
freedom of gravity. However, more general gravity theories [1], like for example Einstein-Cartan
and gauge theories for the Poincaré and the affine groups [2], consider curvature and torsion as
representing independent degrees of freedom. In these models, differently from teleparallel grav-
ity, torsion becomes relevant only when spins are important [3]. According to this point of view,
torsion represents additional degrees of freedom in relation to curvature, and consequently new
physics phenomena might be associated with it [4].

The above described difference rises a conceptual question on the actual role played by tor-
sion in the description of the gravitational interaction. This question shows up due to the diffi-
culty in determining the correct form of the gravitational coupling prescription in the presence of
curvature and torsion. In fact, differently from all other interactions of nature, where the require-
ment of covariance does determine the gauge connection, in the presence of curvature and torsion,
covariance—seen as a consequence of the strong equivalence principle [5]—is not able to deter-
mine the form of the gravitational coupling prescription. The reason for this indefiniteness is that
the space of Lorentz connections is an affine space [6], and consequently one can always add a
tensor (actually a Lorentz-valued covector) to a given connection without destroying the covari-
ance of the theory. Notice that in the specific cases of general relativity and teleparallel gravity,
characterized respectively by a vanishing torsion and a vanishing curvature, the above indefinite-
ness is absent since in these cases the connections are uniquely determined—and the corresponding
coupling prescriptions completely specified— by the combined use of covariance and the strong
equivalence principle. Notice furthermore that in the case of internal (Yang-Mills) gauge theories,
where the concept of torsion is absent!, the above indefiniteness is not present either.

A possible answer to this problem can be obtained by using the so called principle of general
covariance, an active version of the strong equivalence principle [8]. According to this principle,
in order to make an equation generally covariant, a connection is always necessary, which is in
principle concerned only with the inertial properties of the coordinate system under consideration.
Then, by using the equivalence between inertial and gravitational effects, instead of representing
inertial properties, this connection can equivalently be assumed to represent a true gravitational
field. In this way, equations valid in the presence of gravitation are obtained from the corresponding
special relativity equations. It is important to remark that general covariance by itself is empty of
physical content as any equation can be made generally covariant. Only when use is made of the
strong equivalence principle, and the inertial compensating term is interpreted as representing a
true gravitational field, the principle of general covariance can be seen as an alternative version
of the strong equivalence principle. Now, when the purely inertial connection is replaced by a
connection representing a true gravitational field, the principle of general covariance naturally
defines a covariant derivative, and consequently also a gravitational coupling prescription. The
purpose of the present work will be to use this principle to determine the form of the gravitational
coupling prescription in the presence of both curvature and torsion.

'We remark that absence of torsion, like in internal gauge theories, is different from the presence of a vanishing
torsion, which happens in general relativity [7].
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2. General covariance principle and coupling prescription

The process of obtaining a gravitational coupling prescription from the general covariance
principle comprises two steps. The first is to pass to a general nonholonomic frame, where inertial
effects—which appear in the form of a connection, or compensating term—are present. Then, by
using the strong equivalence principle, instead of inertial effects, the compensating term can be
replaced by a connection representing a true gravitational field. In this way, a covariant derivative,
and consequently a gravitational coupling prescription, is obtained. Let us then see how the whole
process works.

2.1 General frames

Let us consider the Minkowski spacetime? of special relativity, endowed with the Lorentzian
metric 1. In this spacetime one can take the frame J, = aa#ay as being a trivial (holonomous)
tetrad, with components d,*. Consider now a local, that is, point-dependent Lorentz transformation
A’ = AL (x). Tt yields the new frame h, = hat'9,, with components A, = h,*(x) given by

hat = Al SpH. 2.1

Notice that, on account of the locality of the Lorentz transformation, the new frame 4, is non-
holonomous, [hp, h.] = f%pe hy, With the coefficient of nonholonomy given by

fe = hy heY (Ovh?, — 3,h%). 2.2)

Making use of the orthogonality property of the tetrads, therefore, we see from Eq. (2.1) that the
Lorentz group element can be written in the form A,¢ = hbp8pd . From this expression, it follows
that

A (haAp®) = X (foCat fub— ba) - (2.3)

Let us consider now a vector field v¢ in the Minkowski spacetime. Its ordinary derivative in
the frame 9, is
0av" = 8,10, (2.4)

Under a local Lorentz transformation, the vector field transforms according to V4 = A4 v¢, and it
is easy to see that 9, = AP, A DLV, where

DV =haVE+ A4 (harp?) V2. (2.5)
In the frame A,, therefore, using the identity (2.3), the derivative (2.5) acquires the form
@avc = haVC + % (fbca "‘facb - fcba) Vb- (26)

The freedom to choose any tetrad {A,} as a moving frame in the Minkowski spacetime introduces
the compensating term %( Jfoa+ fab — fCba) in the derivative of the vector field. This term, of
course, is concerned only with the inertial properties of the frame.

2We use the Greek alphabet u,v,p,... = 0,1,2,3 to denote spacetime indices, and the Latin alphabet a,b,c,... =
0,1,2,3 to denote indices related to the (local) tangent Minkowski spaces.
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2.2 Equivalence between inertia and gravitation: gravitational coupling prescription

According to the general covariance principle, the derivative valid in the presence of grav-
itation can be obtained from the corresponding Minkowski covariant derivative by replacing the
inertial compensating term by a connection A€, representing a true gravitational field. Consid-
ering a general Lorentz-valued connection presenting both curvature and torsion, one can always
write [9]

Acba _Acab = Tcab +fcaba (27)
with T, the torsion of the connection A€,,. Use of this equation for three different combination
of indices gives

3 (fo‘at fab = [ ba) = Aap — K ap- (2.8)
where
Kcab - % (Tbca + Tacb - cha) (29)
is the contortion tensor. Equation (2.8) is completely general, and is the crucial point of the ap-
proach. It is actually an expression of the equivalence principle in the sense that, whereas its
left-hand side involves only inertial properties of the frames, its right-hand side contains purely
gravitational quantities. Using this expression, the derivative (2.6) becomes

DV = hVE+ (A — K ) VP = h' DVE, (2.10)
where
DV =0,V 4+ (A% —K aqu) V¢ (2.11)
is a generalized Fock-Ivanenko derivative. Using then the vector representation (S,;)ys of the
Lorentz generators [10], the generalized Fock— Ivanenko derivative (2.11) can be written in the
form
DX =0, X — (A%, —K®)) (Sap)a X (2.12)

Now, although obtained in the case of a Lorentz vector field, the compensating term (2.3) can
be easily verified to be the same for any field. In fact, denoting by U = U(A) the element of the
Lorentz group in an arbitrary representation, it can be shown that [11]

(haU)U_l :_ﬁ(fbca +fach_fcha) ch, (2.13)

with J”¢ denoting the corresponding Lorentz generator. In the case of fields carrying an arbitrary
representation of the Lorentz group, therefore, the covariant derivative (2.12) acquires the form

Dy =0y— % (A%, —K®,) Jap. (2.14)

This means that, in the presence of curvature and torsion, the gravitational coupling prescription
implied by the general covariance principle amounts to replace

0, =040y, — D, =h',D,. (2.15)
We notice finally that, due to the relation
b ab Jab
AV — KT =AY, (2.16)

e}
with A% «« the spin connection of general relativity, the above coupling prescription is clearly equiv-
alent with the coupling prescription of general relativity.
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3. Example: the spinor field

The gravitational coupling prescription (2.14-2.15) has already been applied to study the mo-
tion of both a spinless and a spinning particle [12]. Here, we apply it to the case of a Dirac spinor
in the presence of curvature and torsion.

3.1 Dirac equation

The Dirac equation in flat spacetime can be obtained from the Lagrangian (we use units in
whichhi=c=1)
£= 5 (W80 — 3,973,y ) — v, 3.1)

where §,* is a trivial tetrad, m is the particle’s mass, and {y*} are (constant) Dirac matrices in a
given representation. Making use of the coupling prescription (2.14-2.15), with J* = ¢*¢/2 :=
(i/4)[y*,¥] the spinor representation of the Lorentz generators, we obtain

£= 5 (W Dy — D y) — my, (32)
where the Fock-Ivanenko derivative operator is given by
Dy =0,y — £ (A%, — KP¢,) opey. (3.3)

This covariant derivative yields the coupling prescription for spin-1/2 fields in the presence of

[e]
curvature and torsion. As usual, a functional derivative with respect to Abcp — Kbcy = Abcp yields
the spin tensor. A straightforward calculation shows that the Dirac Lagrangian (3.2) gives rise to

f'he" Dy = my, (3.4

which is the Dirac equation in the presence of curvature and torsion. Of course, as already men-
tioned, it is equivalent with the Dirac equation in the context of general relativity [13].

3.2 Torsion decomposition

As is well known, torsion can be decomposed in irreducible components under the global
Lorentz group [14]

Ty = 5 (tnaw = tavi) + 5 (80 Tv — 8 Ti) +Eagovp S°- (3.5)
In this expression, 7, and S represent the vector and axial parts of torsion, defined respectively by
T,u = TVV# and SY = %S'u\/pc Tvpc, 3.6)

and 1),y is the purely tensor part, which satisfies the properties fy,y = f,py and ', =0 ="y ,. As
a simple calculation shows,

LK Y Ope = =¥ (3Tu+ 3 Sa¥) 3.7)

with ¥ =5 := iY"y'¥?y’. The covariant derivative (3.3) then becomes

Dy = (B A%, 00— 1T~ 5,) . G8)
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We observe that, whereas the functional derivative of the Lagrangian (3.2) in relation to the con-
nection Ab"y still gives the spin tensor, derivatives with respect to 7,, and S, give respectively the
vector and the axial-vector currents of the spinor field.

Substituting now the covariant derivative (3.8) in the equation (3.4), we get

iV (Ou— 5 A uOhe — 3 Tu— T Su¥’) y =my, (3.9)

where ¥ = (x) = Y h,*. This is the Dirac equation in the presence of curvature and torsion,
written in terms of irreducible components for torsion. In the specific case of teleparallel gravity,
Abc,, = (, and the resulting Dirac equation turns out to be written in terms of the vector and axial-
vector torsions only [11]. We remark that in the general relativity case, where the Fock-Ivanenko
derivative is given by D,y = 9,y — 41 Xbcy GV, if the spin connection f({bc,, is written in terms of
the coefficient of nonholonomy f“., a decomposition similar to (3.7) can be made, and the Dirac
equation turns out to be written in terms of the trace and the pseudo-trace of f¢5. only>.

4. Final comments

A fundamental difference between general relativity and teleparallel gravity is that, whereas
in the former curvature is used to geometrize the gravitational interaction—spinless particles fol-
low geodesics—in the latter torsion describes the gravitational interaction by acting as a force—
trajectories are not given by geodesics, but by force equations [15]. According to the teleparallel
approach, therefore, the role played by torsion is quite well defined: it appears as an alternative
to curvature in the description of the gravitational field, and is consequently related with the same
degrees of freedom of gravity. Now, this interpretation is completely different from that appearing
in more general theories, like Einstein—Cartan and gauge theories for the Poincaré and the affine
groups. In these theories, curvature and torsion are considered as independent fields, related with
different degrees of freedom of gravity, and consequently with different physical phenomena. This
is a conflicting situation as these two interpretations cannot be both correct.

As an attempt to solve the above described paradox, we have used the general covariance
principle—seen as an alternative version of the strong equivalence principle—to study the gravita-
tional coupling prescription in the presence of curvature and torsion. According to this principle,
the dynamical spin connection, that is, the spin connection defining the covariant derivative, and
consequently the gravitational coupling prescription, is A€, — K¢,. Even in the presence of cur-
vature and torsion, therefore, torsion appears as playing the role of gravitational force. This result
gives support to the point of view of teleparallel gravity, according to which torsion does not rep-
resent additional degrees of freedom of gravity, but simply an alternative way of representing the

o

gravitational field. Furthermore, since A€, — K4, = A4, the ensuing coupling prescription will
always be equivalent with the coupling prescription of general relativity, a result that reinforces the
completeness of this theory.

It is important to add that, at least up to now, there are no compelling experimental evidences
for new physics associated with torsion. We could then say that the teleparallel point of view is
favored by the available experimental data. For example, no new gravitational physics has ever

3We thank R. Aldrovandi for calling our attention to this point.
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been reported near a neutron star. On the other hand, it is true that, due to the weakness of the
gravitational interaction, no experimental data exist on the coupling of the spin of the fundamental
particles to gravitation. Anyway, precision experiments [16] either in laboratory or as astrophysical
and cosmological tests are expected to be available in the foreseeable future, when then a final
answer will hopefully be achieved.
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