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Noncommutative (NC) theories have a long history [1]. More recently theseviound in
a limit of string theory with D-branes in a constant NS-NS background B fgldIn this limit
gravity decouples but still leaves a trace in the emerging NC gauge thépint splitting regu-
larization is used in the world-sheet then NC appears through the Moydiliprr which is defined
as

A(x) % B(x) = €29 AN AX)B(y) [y, (1)
whereB" is the NC parameter. If Pauli-Villars regularization is used instead then oydijsage
symmetry is preserved and NC appears in higher dimension operatore tBn& matrix must
be regularization independent these two descriptions are related bgextapa field redefinition
known as the Seiberg-Witten (SW) map [2].

From the space-time point of view these two descriptions have quite diffgrgperties. When
the Moyal product is used the ultraviolet structure of the theory is not neoldidi] but new infrared
divergences appear and get mixed with the ultraviolet ones [4]. This mofidiyergences turns
the theory non-renormalizable except in some cases where supersynsr@ggent [5]. Anim-
portant property of NC theories induced by the Moyal product, whictingdjgishes them from the
conventional ones, is that translations in the NC directions are equitalgatige transformations
[6]. This can be seen even for the case of a scalar field which has thgabg® transformation
3p=—i [(Ap,f\]*, where[A, B, = AxB—BxA is the Moyal commutator. Under a global translation
the scalar field transforms as@= E“apfp. Derivatives of the field can be rewritten using the Moyal
commutator a9,¢ = —i8,;[x, @, so thatdp = 57 with gauge parametér = —,1¢x". The
only other field theory which has a similar property is general relativity ekmral translations are
gauge transformations associated to general coordinate transformatimssemarkable property
shows that, as in general relativity, there are no local gauge invatiaetwables in NC theories.

In the description obtained through the SW map the theory is presented @ssaes@ansion
in 8. In this way a local field theory is obtained at the expense of introducingge laumber
of non-renormalizable interactions [7]. At the classical level, on the atluly, it is possible to
understand very clearly the breakdown of Lorentz invariance indbgettie noncommutativity.
The dispersion relation for plane waves in a magnetic background gets edosiifithat photons
do not move with the velocity of light [8]. However, the connection betweandiations and
gauge transformations seems to be lost. A global translation on a commutativecaéar field
o1 = &9, can no no longer be rewritten as a gauge transformation Sigee 0. We will
discuss how other aspects concerning gravity emerges in the descripticim nvakes use of the
SW map. In this case NC field theories can be interpreted as ordinary théwoneersed in a
gravitational background generated by the gauge field. We will showthikd@ dependent terms
in the commutative action can be interpreted as a gravitational backgrouold dépends on the
gauge field. We then determine the metric which couples to real and complaxfsgds. We find
that the uncharged field coupling is twice that of the charged one. Somwimteapret the gauge
coupling in NC theory as a particular gravitational coupling which dependé® charge of the
field. We also determine the geodesics followed by a massless particle in thiggdaaed. We find
that its velocity differs from the velocity of light by an amount proportionad teith the deviation
for the uncharged case being twice that of the charged one. For tharged case the deviation is
the same as that found for the the gauge theory in flat space-time [8, 8]fidad check we derive
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these same velocities in a field theoretic context.
The action for the NC Abelian gauge theory in flat space-time is

&:_%/d“x FW 4 Fy, @)

whereF,, = d,A, — 0yA, —i[A,,A)],. For a real scalar field in the adjoint representatioty ¢f)
the flat space-time action is

S = %/d“x DM x Dyf, (3)

whereDyd = 9,6 — i[Au, ®].. On the other side, for a complex scalar field in the fundamental
representation dfl (1) the action is

Sp= [ d'x Bx (B, @

with D@ = 0,¢0— iA,x@. The gauge transformations which leave the above actions invariant are
given by
SA =D, 3 =-i[d.AL,  Bp=iAxG 3 =—i¢ xA. (5)

To first order in@ the SW map is [2, 10]

~ 1
Ay = A= 50%PAL @A+ Fr),

& = & — 6"PAIR0,

~ 1

®= - 56“%65@, (6)

We can now expand the NC actions (2),(3) and (4) using (1) and applyn#me(6) to get the
corresponding commutative actions.
For the real scalar field we find, always to first ordefjn

S=j [ dx [a%auqa + 20W9F,Y <_au¢av¢ + %nwa"¢0p¢>] - @

It is worth to remark that the tensor inside the parenthesis is tracelessntwveonsider this same
field coupled to a gravitational background

1
S0 =15 / d*x/=gd" 9,00, (8)
and expand the metrig,, around the flat metriqyy,
Ow = Nw +hw +Nwh, 9
whereh,, is traceless, we get
1
Sho = 5 [ 0% (400,0 — H0,00, + h*p09). (10)
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where indices are raised and lowered with the flat metric. Since both adfrsd (10), have the
same structure we can identify a linearized background gravitational field

1
h = BR84S e PRy,
h=0. (12)
Then, the effect of noncommutativity on the commutative scalar field is similar ébcbdfependent
gravitational field [10].

The same procedure can be repeated for the complex scalar field [@Gnd\the linearized
metric

1
(B + 8 Fo¥) + 6 PRy,
. (12)

NI~

hv =
h

I
o

Then charged fields feel a gravitational background which is half dfféglaby the uncharged
ones. Therefore, the gravity coupling is now dependent on the cloétge field, being stronger
for uncharged fields.

Notice that the gauge field has now a dual role, it couples minimally to the ahéieje and
also as a gravitational background. As it is well known the SW map givedaishe following
action

1
S = —%/d“x [F“"FW + 20,V <Fp°Fm, + ZnWF“BFGB)] . (13)

Again, the tensor inside the parenthesis is traceless. At this point we cetdripted to consider
this action as some gravitational action build up from the metric (11) or (12¢e$ie field strength
always appears multiplied Winside the metric, all invariants constructed with it will be of order
8. Hence, they can not give rise to (13), unless they appear in combisatioriving the inverse
of 0. If we insist in having an action which is polynomial &the best we can do is to regard the
gauge field as having a double role again and couple it to gravitation as imghieys case. We
then find thah® is given by (12). Since the NC gauge field resembles a non-Abelian delgde
we expect that its commutative counterpart couple to the same gravitatiddahgi¢he charged
one. It should also be remarked that in this case the gravitational fieldot&e imterpreted just as
a fixed background since it depends on the dynamical gauge field.

Having determined the field dependent background metric we can nowittympperties. A
detailed analysis shows that it describes a plane gravitational wave [10].

We can now turn our attention to the behavior of a massless particle in thisrbackly Its
geodesics is described by

ds? = (1+ %eaBFGB> dxdx, + 8, Foydxdx’ = 0. (14)

If we consider the case where there is no noncommutativity between spatime, that i9% = 0,
and callingd'l = €'ikek, FIO = E!, andF'/ = ¢'kBX, we find to first order i that

(1-V?)(1—26-B)—6- (VX E)+v0-B— (B-V)(6-V) =0, (15)
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whereV is the particle velocity. Then to zeroth order, the velogiysatisfies’? = 1 as it should.
We can now decompose all vectors into their transversal and longitudimgdanents with respect
to Vo, E = Et +VoEL, B = Br + VB and® = 61 + Vpb_. We then find that the velocity is

V2:1+6T'(§T—V0XET). (16)

Hence, a charged massless particle has its velocity changed with resgrectedocity of light by
an amount which depends 8nFor an uncharged massless particle

V¥ =1+ 267 - (Br — Vo x Ey), (17)

and the correction due to the noncommutativity is twice that of a charged particle

We can now check the consistency of these results by going back to theabagtion (7)
and computing the group velocity for planes waves. Upon quantization iaeythge velocity of
the particle associated to the respective field. For the uncharged sekllavdi get the equation of
motion

1
If the field strength is constant we can find a plane wave solution with the fiolipdispersion
relation 1
<1— éeWFW> k? — 20" F, Kk ky = O, (19)
and using the same conventions for vectors as before, it results in
Rz—1f2€) (B kaé) (20)
2 T (Br = S X ET);

wherek! = (w,R). We then find that the phase and group velocities coincide and are gi@a b
as expected. For the charged scalar field we have to turn off the gaugéng in order to get a
plane wave solution. In this case the equation of motion is

In a constant field strength background the dispersion relation for a plave reads as in (19) with
0 replaced byd/2. Then we must perform the same replacement in the phase and grocipie®lo
and we get (16). Therefore, in both pictures, noncommutative andafianal, we get the same
results.

For the gauge field the situation is more subtle because of its double rolee iEhaw clear
way to split the action (13). What can be done is to break up the gauge field bmckground plus
a plane wave as in [8]. We then get the following dispersion relation

k? — 20" F, Kk ky = O, (22)

whereF," is now the constant background. This leads to (20), that is, the dispesdation for
the uncharged scalar field. It also reproduces the result in [8, 9hwhe background is purely
magnetic. This shows the dual role of the gauge field, since it couples\itagi@n as a charged
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field but its dispersion relation is that of an uncharged field. It shouléfarked that it is possible
to derive the dispersion relation for the general case, including the stitagesituation whe®% =
0. A detailed analysis will be presented in [11].

We have seen that it is possible to regard noncommutative theories asitonaktheories
embedded in a gravitational background produced by the gauge fiatdbilings a new connection
between noncommutativity and gravitation. We could imagine that this is a pecubathg first
order term in thed expansion of the SW map but an analysis to all orde&\vas performed in
[12].

I would like to thank the organizers for the kind invitation to deliver this talk. Wisk was
partially supported by FAPESP, CNPq and PRONEX under contract G&R)02/1998-99.
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