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Casimir energy ofκ-deformed fields

1. Introduction

The macroscopically observable vacuum energy shift associated with a quantum field is the
regularised difference between the vacuum expectation value of the corresponding Hamiltonian
with and without the external conditions demanded by the particular physical situation at hand.
At the one-loop level, when the external conditions are represented by boundary conditions, this
leads to the usual Casimir effect [1]. In the evaluation of the zero point energies associated with
confined quantum fields some configurations, which depend on the nature of the quantum field, the
type of spacetime manifold, its dimensionality, and the specific boundary condition imposed on the
quantum field on certain surfaces, lead to relatively simple spectra, but others lead to rather complex
ones. The main obstacle is the evaluation of the spectral sum that results at the one-loop level from
the definition of the Casimir energy. In order to be physically meaningful this evaluation demands
the employment of regularization and renormalization techniques. These techniques range from
the relatively simple cutoff method, employed by Casimir himself [1], to a number of powerful and
elegant generalised zeta function techniques [2]. Contour integral representations of spectral sums
are a great improvement in the techniques of evaluating zero-point energies; they are especially
useful when the spectra are not simple, and have been employed before see for instance [3, 4] and
references therein. Here, a simple and effective method for summing up over zero-point non-trivial
energy spectra stemming from the imposition of boundary conditions quantum fields is discussed
and then applied to obtain the Casimir energy ofκ-deformed quantum scalar and electromagnetic
fields. We employ natural units ¯h = c = 1.

2. A useful sum formula

For completeness we sketch the derivation of a simple sum formula. For a detailed derivation
see [3, 4]. Consider a field theory in 3+ 1 ultrastatic flat space-time under boundary conditions
imposed on two parallel planes of areaL2 kept at a fixed distancèfrom each other. Suppose also
that the conditionL � ` is in force. The one-loop Casimir energy reads

E0 = α
L2

2

∫
∑
n

d2 p⊥
(2π)2 Ωn , (2.1)

whereα is a dimensionless factor that takes into account the number of internal degrees of freedom
of the quantum field and

Ωn :=

√
p2
⊥ +

λ2
n

`2 +m2 , (2.2)

whereλn is then-th real root of the transcendental equation defined by the boundary conditions,

p⊥ =
√

p2
x + p2

y, andm is the mass of an elementary excitation of the quantum field. Cauchy’s
integral formula allow us to write

Ωn = −
∮

Γ

dq
2π

2q2

q2 +Ω2
n
, (2.3)

where in principleΓ is a Jordan curve on the complexq-plane with Imq > 0, that can be chosen
to be a semicircle of infinitely large radius whose diameter is the entire real axis. Taking Eq. (2.2)
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Casimir energy ofκ-deformed fields

into Eq. (2.1) we have

E0 = −α
L2

2

∫
d2 p⊥
(2π)2

∮

Γ

dq
2π∑

n

2q2

q2 +Ω2
n
. (2.4)

The summation over the discrete indexn can be performed as follows. Consider a complex function
G(z) of a single complex variablezsymmetrical on the real axis and such that its roots are simple,
nonzero and symmetrical with respect to the origen. The assumption thatz= 0 is not a root ofG(z)
is not an obstacle because if this happens to be so we can divideG(z) by some convenient power
of z eliminating thus the zero from the set of roots without introducing new singularities. Due to
the symmetry of the roots we can also order and count the roots ofG(z) in such a way that

λn = −λ−n , n = ±1,±2, . . . . (2.5)

Consider now the meromorphic function

J(z) :=
∞ ′

∑
n=−∞

1
z− iλn

, (2.6)

where the prime indicates that the term corresponding ton = 0 is omitted from this sum. The
functionJ(z) has the following easily verifiable properties: (i) it has first order poles determined
by the roots ofG(iz); (ii) the corresponding residua are all equal to one. Taking into account the
symmetry of the roots expressed by Eq. (2.5) we can rewriteJ(z)as

J(z) :=
1
2

(
∞ ′

∑
n=−∞

1
z− iλn

−
∞ ′

∑
n=−∞

1
z+ iλn

)

=
∞

∑
n=1

2z
z2 +λ2

n
. (2.7)

Consider now the functionK (z) := G(iz). We can say that

J(z) =
1

K (z)
d K (z)

dz
. (2.8)

In fact, the rhs of Eq. (2.8) has the same pole structure as the originalJ(z), and also the same
residue at each pole. By invoking the Mittag-Leffler theorem on the pole expansion of meromorphic
functions [5] we conclude that Eq. (2.8) is true up to an entire function that does not contribute to
the evaluation of the Casimir energy. It follows that we can write

1
K (z)

d K (z)
dz

=
d
dz

log[K (z)] =
∞

∑
n=1

2z
z2 +λ2

n
. (2.9)

In order to make use of Eq. (2.9) we relate the complex variablez and the complex momemtum
variableq by writing

q2 +Ω2
n =

z2 +λ2
n

`2 , (2.10)

hence

z= z(q, p⊥) = `
√

q2 + p2
⊥ +m2 , (2.11)
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Casimir energy ofκ-deformed fields

and (notice the omission ofλ0 = 0)

∞

∑
n=1

=
2q2

q2 +ω2
n

=
`2q2

z

∞

∑
n=1

2z
z2 +λ2

n
. (2.12)

Upon changing variables (d/dz=
(
z/`2q

)
d/dq) we obtain the unregularised Casimir energy

E0 = −α
L2

2

∫
d2 p⊥
(2π)2

∮

Γ

dq
2π

q
d
dq

log[K (z)] . (2.13)

Equation (2.13) can be integrated by parts on an open curve that lies on the Riemann surface of
the integrand the projection of which on the originalq-complex plane is the curveΓ, and after
discarding a phase term we obtain for the unregularised Casimir energy the expression

E0 = α
L2

2

∫
d2 p⊥
(2π)2

∮

Γ

dq
2π

log[K (z)] . (2.14)

In order to regularise (2.14) we split the functionK (z) into two separate terms

K (z) =K1(z)+K2(z) , (2.15)

with follwing properties: (i) all terms whose integrals diverge when Rez > 0 are expressed by
K1; (ii) all terms whose integrals diverge when Rez < 0 are expressed byK2, (iii) the condition
K1(z) =K2(−z) holds. From this it follows that we can write for theregularisedCasimir energy
the expression

E0 = α
L2

2

∫
d2 p⊥
(2π)2

∫
dq
2π

log

[
1+

K1(z)
K2(z)

]
. (2.16)

All along the real axisz does not change sign and is function ofq and p⊥. This procedure can
be extended and applied to the case where the integrand leading to the Casimir energy is a more
complicated function ofΩn. It suffices to write

f (Ωn) = −
∮

dq
2π

2 f (q)
q2 +Ω2

n
, (2.17)

that holds if i f (Ωn) = f (iΩn). This will be the case of the kappa-deformed dispersion relation
given by Eq. (3.1) below since arcsinh(ix) = i arcsin(x).

3. The Casimir energy of κ-deformed theories

A quantum field theory is said to beκ-deformed when its spacetime symmetry is described
by theκ-deformed Poincaré algebra. As is the case with non-deformed theories,κ-deformed ones
lead to mass shell conditions and dispersion relations. For an introduction to these type of theories
see [6] and the references therein. The important fact for us here is that the complexity of the
dispersion relation makes it an ideal test for our technique. The dispersion relation for a kappa-
deformed scalar field, the prototype quantum field theory, reads [6]

f (Ωn) =
1
η

arcsin(ηΩn) , (3.1)
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whereη = 1/κ and

Ωn =

√
p2
⊥ +

λ2
n

`2 +m2 . (3.2)

The Casimir energy is given by

E0(`,η,m) = L2
∫

∑
n

d2p⊥
(2π)2 f (Ωn) . (3.3)

Cauchy’s integral formula allow us to write the integral representation

arcsinh(ηΩn) = −
∮

dq
2π

2q arcsin(ηq)
q2 +Ω2

n
. (3.4)

It follows that

E0(`,η,m) = −L2

η

∫
d2p⊥
(2π)2

∮
dq∑

n

2q arcsin(ηq)
q2 +Ω2

n
. (3.5)

Introducing the variablez := `
√

p⊥2 +q2+m2, we can write

∞

∑
n=1

2q2

q2 +Ω2
n

=
(

`q
z

)2

∑
n=1

2z2

z2 +λ2
n
, (3.6)

andd/dz=
(
z/`2 q

)
d/dz. Therefore the Casimir energy can be recasted into the form

E0(`,η,m) = −L2

η

∫
d2p⊥
(2π)2

∮
dq
2π

arcsin(η q)
d
dq

log K (z) . (3.7)

Integrating by parts on theq-complex plane and discarding an unimportant phase term we arrive at

E0(`,η,m) = L2
∫

d2p⊥
(2π)2

∮
dq
2π

logK (z)√
1−η2q2

. (3.8)

Keep in mind that nowz= z(p⊥,q,m). The closed integral on the complexq-plane can be evaluated
as follows: we divide the contour in such way that we have to evaluate an integral over the real
axis plus the contribution of large semicircle whose radius→ ∞. It can be shown then that this last
integral does not contribute to the Casimir energy. The real axis must be partitioned according to
its branch points and cuts. A careful analysis leads then to the following expression for the Casimir
energy

E0(`,η,m) = L2
∫

d2p⊥
(2π)3

∫ 1/η

0
dq

1√
1−η2q2

log

(
1+

K1(z)
K2(z)

)
. (3.9)

If the boundary conditions are given by those of Dirichlet, we know thatK (z) =G(iz) = sin(z).
Then making use of the relation sin(iz) = i sinh(z), we can easily identify the divergent and con-
vergent parts ofK = K1 +K2, and we write

E0(`,η,m) = L2
∫ 1/η

0

dq√
1−η2q2

∫ ∞

0

dp⊥
(2π)2 p⊥ log

(
1−e−2`

√
p2
⊥+q2+m2

)
. (3.10)
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These result can be easily adapted for the case ofκ-deformed Maxwellian electromagnetism. E-
quation (3.10) can be recast into a more illuminating form by writing

E0(`,η,m) =
L2

(2π)2

∫ 1/η

0

dq√
1−η2q2

I
(
q2) , (3.11)

where

4`2
√

q2 +m2I
(
q2) = −2Li2

(
e−2`

√
q2+m2

)
`q2−Li2

(
e−2`

√
q2+m2

)
`m2

−
√

q2 +m2Li2

(
e−2`

√
q2+m2

)
. (3.12)

As a check we can setη → 0 and alsom→ 0. The integrals are easily manipulated and final result
agrees with the standard Casimir energy for a massless scalar field. In the massless case, equation
(3.10) can be also manipulated to yield

E0(`,η,m= 0) = − L2

4π2`3

∞

∑
n=1

1
n2

∫ 1/η

0
dy

(
1+

1
2n

)
e−2ny

√
1−
(ny

`

)2
, (3.13)

in agreement with [6].

4. Conclusions

Here we have sketched the employment of a simple but effective technique of evaluating the
Casimir energy associated with non-trivial dispersion relations. This technique can be also em-
ployed to evaluate photon emission rates associated withκ-deformed scalar fields. Extensions to
more than one constrained dimension and finite temperature are presently being considered.
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