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1. Introduction

The motivation to consider an extra U(1)’ symmetry in gauge theories comes from the super-
string approach [1], grand unified theories [2] and models of dynamical symmetry breaking [3].
In the context of supersymmetry (SUSY), the breaking of the extra U(1) symmetry is important to
give us an expectation value to the singlet field of the Standard Model [4-7]. In superstring inspired
models, the motivation for eletroweak and U(1)’ symmetry breakings can be driven by soft super-
symmetry breaking parameters and yield a Z' mass of the order of the eletroweak scale [1]. The
other motivation for extra Abelian factor is to find potentials without flat directions. Flat directions
in scalar potentials appear in SUSY theories: Abelian theories where the gauge symmetry is broken
with a Fayet-lliopoulos (FI) D-term [8]. Some consequences of the SUSY teories with a D-term
are cosmic string formation [9-15]; another consequence is the hybrid inflation [16]. In the first
case, there is the possibility that the cosmic string has not been formated in these U(1) models with
the flat directions [17]. For this, we propose other possibilities to build up a U(1) potential that,
with the specific choice of parameters in the F-term and considering the gauge-field mixing or a
Lorentz-breaking couplings [18], gives us a potential without flat-direction.

The importance of the Lorentz breaking effects was proposed, a few years ago, in the context
of a Maxwell-Chern-Simons (MCS) gauge theory, as an additional magnetic moment interaction
[19] for which Bogomol'nyi-type self-dual equations [20]. In the context of supersymmetry, it is
important in the N=2 supersymmetric extension of the self-duality model that relates the central
charge, the extended model with the existence of the topological quantum numbers [21] and also
appear naturaly in noncommutative framework [22].

In this work, we consider the general action that exhibits these two aspects, the gauge-field
mixing and the Maxwell-Chern-Simons effects in an N=1 supersymmetric theory. We study the
potential generated by these two contributions and analyse the advantages of the use each terms.

The letter is organized as folows. In Section 2, we discuss the generalized model with these
two contributions, the gauge-field mixing and Maxwell-Chern-Simons contribution. In Section 3,
we build up the potential and discuss its validity. Section 4 is devoted to the discussion of the
supersymmetry an gauge symmetry breakings in connection with a superconducting cosmic string
configuration.

2. The general supersymmetric model

In this section, we study the general N=1 supersymmetric version df {i¢ x U (1)’ model
with gauge mixing and Maxwell-Chern-Simons terms. For the whole set up of superspace and
superspace, the component-field version oflthd) x U (1)’-gauge theory and the algebraic ma-
nipulations with the Grassmann-valued spinorial coordinates and fields, we refer to the conventions
adopted in the work of Ref. [23]. In our approach, we can split the Lagrangian into five pieces

L = Lsp+ LoEm + Lmcs+ Lo + LF, (2.1)
where Lsr is the part of the Lagrangian that contains the scalar field couplings, given by

[,SF:q_)iQZqQ(chD”eee_e‘i‘fiequ%z”Bee_e7 (22)
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The Lgrm contains the gauge-field mixing and is given by
Lopm = 01X Xq|ee + a29" Valee + a3 X Valee + h.C. | (2.3)
the Maxwell-Chern-Simons sectdi,csreads as
Lymcs= B1X%(Dal%)Seg + B29%(Da)Slgg + B3X?(Da¥)Sgg + hoC. | (2.4)
the Fayet-lliopoullos term piece, the D-term, is
Lp = kiD1 +kaDg, (2.5)
and the superpotential patty, is proposed as below
Lr=mD, O +M,5 . (2.6)

The a’s, B’s, ki, ko, m andni are real parameters of the model. The ingredient superfields of
the model are chiral scalars supermultipletsand, the gauge superpotential}, %4, and the
dimensionless field; the latter carries the background fields responsible for the Lorentz symmetry
violation. TheB-component expansions, whetg and 1}, are already assumed to be in the Wess-
Zumino gauge, take the forms as below

® = 1998 [(x) 1 B3E,(X) + BOG(X)], 2.7)
%1(%,8) = 01 (y) + V26"X,a(y) + 66HI (¥), (2.8)

Y = 8aHBH,,(X) + BOOA(X) + BBBA(X) + 6666D1 (X) , (2.9)
%, = 60" BAL(X) + 680X (X) + 660 X(X) + 6688D(X) , (2.10)
5 = €7 109"9S(x) 1 6%y () -+ BOF (x)] (2.11)

with the superfield-strengthyg, and9; written as

_ _1n2pa
o= —gD'D*%, (2.12)
Ya= —7DD?,.
Our conventions for the SUSY covariant derivatives are given as follows
_ 5. it pa
Qa— 0a —10,4,0%,, (2.13)

Dag= —0s+ ieaO'gaau,

where theo*-matrices read as* = (1;0'), thea'’s being the Pauli matrices. As it can be readily
checked, this action is invariant under two independent sets of Abelian gauge transformations, with
superfield parameters; and/\;

ox) — @(x) =K,
9 (2.14)
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whereé; and¢, are real parameters that appear as@hedependent components 6f and/\,,
respectively.
The Lagrangian takes now the form

L=1Ip+Lp+Ly—U. (2.15)

We shall from now on focus on the potentid| since our main effort is to discuss the pattern of the
internal symmetry and SUSY breakdowns.

3. Thegeneral potential with Chern-SimonsU (1) x U (1)’-mixing
In this first analysis, let us consider the main aspects of the potential for the general component
Lagrangian (2.6). The potential U is given by

U —?D1+?D2+7D1D2+ZF|F|+IZG|G|, (31)

with A; = a1 +8B1(S+ S7), Az = 02+ 8B2(S+ S) andAz = a3+ 8B3(S+ S"). The solutions to
the auxiliary fields appearing in (3.1) are given below

D,

242 3ieBloi2—150Q10 2+ ke — k)

Dz=%[%2¢lQ|<ﬂ|z—%Z| eE||0||2+4&A1k1—k2],

3.2)
d:_%\%/:_m>
ﬁ:_g%\ll':_ﬁnh

consideringA; = 1, A, = 1 andAz = 2A, we havel’ = 1— A%, The constant A depends on the
mixing parameters and the Lorentz breaking effects, it reads as

A=a+8B(S+S). (3.3)

The Fayet-llliopoulos D-term provides a possible way of spontaneously breaking SUSY [8].
The potential (3.1), in turn, can be split as follows

whereU, is the self-coupling potential for the charged scalgrsandg_

2
Up = #F 100~ lo-[27 + (B2 — B —4¢) fo. 2+

2 P2 (3.5)
+ (Bre+ P+ A o P45 + 5+ ApK
with k; = —p andk, = k. Ug is the part that contains thefield self-interactions witim= 0
Us = 250, P—lo- P2~ (%2+ ) lon P+ (%24 $) lo- . 36)
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Figure 1: The potential of the superconducting cosmic string for some mixing paramAntéhe mixing
parameters are in agreement with the cosmic string particle generation presented in [11].

andUgy ¢ is the mixedp— o self-interaction part, given by

Age
U(p—cz_?(|(p+|2_|q)—‘2) (‘0+‘2_|0—‘2) . (3-7)
In the next section, let us analyse this potential in connection with the cosmic string configuration.
We also plot the region of validity of the potential. We analyse the symmetry and supersymmetry
breakdowns and discuss the induced supersymmetry breakings given by Lorentz breaking effects.

4. The application to cosmic strings

Now, we analyse the crucial issue of gauge symmetry and supersymmetry breakings, and the
consequent formation of a cosmic string configuration. The cosmic string that we have revised in
Ref. [11], is determined in connection of the scalar potentigd of the eq.(3.4). The minimum
energy configuration of a static vortex potential fodses in (3.4) is <@, >=n, <@_>=0,
<o, >=0and<o_>=0, where n?= %pv and v=,/[1+ ';—i +2ip"], with the constraint
given by

——(1+?—v). (4.1)
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Figure2: Plot of the% in function of the% to the 0< % <103

To analyse the possibility that the parametamsndn give us a positive value, let us investigate
the plot of% as a function ofip, given in Fig (2). We see that there is a region where it is possible
to obtain a range of values for whieh? andn? are both positive.

Then, it is possible to find the stable potential to the cosmic string without flat directions.
The vacuum analysis of the potential gives us that it vanishes in its minimum. So, SUSY is not
spontaneously broken in the vacuum. The U(1) symmetry related with the vortexpfiedbroken,
but the extraJ (1)’ symmetry related with the field, ando_ does not break and gives us an
eletromagnetic propagation. In the core of the string, this scenario charges>=< ¢@_ >=0

and< o, >= w%(Aer k). Then, theU (1) breaking in the core gives us the bosonic particle
condensate in the core. The potential does not vanish in these extrema, then the SUSY is broken in
the core.

Until now, we have discussed only the spontaneous SUSY breaking. Now, let us explain
in more details how the SUSY breaking appears in connection with the Lorentz breaking. To
discuss this matter, let us recall that conventional Lorentz transformations are implemented as
coordinate changes, and we usually refer to them as observer Lorentz transformations. However,
we can also consider the so-called particle Lorentz transformations, which consist in applying
boosts or rotations on particles and localised fields, but never on the background fields, contrary to
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the observer Lorentz transformations, which act also on ackground fields.

Distinguishing between observer and particle Lorentz transformations is crucial for the kind
of model we are considering here, where the Chern-Simons term described in the Lagrangian of
eq.(2.4) is to be regarded as arising from a constant background$tetdjo*(S— S*), which is
to be seen as a global feature of the model, and is not related to localised experimental conditions,
contrary the electromagnetic field\", which is a perturbation that propagates in a space-time
dominated by8". We note that this part only exists$¥has an imaginary part.

So, in applying particle Lorentz transformations, the gauge invariant Chern-Simons term of
eg.(2.4) does not display Lorentz invariance, siB¢é not acted upon by ard-matrix belonging
to Lorentz group, so that tha’s acting onF* andA® do not combine to produce thietA = 1-
factor that would appear ' were boosted, as it happens for the class of observer Lorentz trans-
formations. In this particle frame, SUSY is broken. This detail shall be analysed in a forthcoming
work, where we analyse the case of an imaginary paBwereS. In this letter, we consider only
the real part of5. If this is the case (R8+# 0, Im S= 0), then the only effect of the background is
to renomalise the gauge field kinetic term and the Lorentz-violation Maxwell-Chern-Simons does
not show up; in such a situation, no violation of Lorentz symmetry is detected.

5. General conclusions

In this work, we study a general supersymmetric action to present a potential without flat di-
rections. In our model, we study two aspects: a gauge-field mixing and the case with a Maxwell
Chern-Simons term. We can compare these two possibilities and we see that in the Maxwell-Chern-
Simons case, the potential has a minimum when the extra scalar field has a constant value. But, we
pay attention to the fact that we only analyse the real part of this field, since its complex part does
not contribute to the analysis of the breaking. Nevertheless, if we consider the complex part, we
have other consequences to the model,such as the possibility of Lorentz symmetry breaking. If we
analyse the Lagrangian (2.6) in components, we see that there appears a gauge-field mixing. A mo-
tivation to the study of these potentials is a cosmic string scenario. This approach is an alternative
to the cosmic stirng potential without flat directions. In forthcoming works, we must analyse the
potentials in connection with cosmic string, bosonic supercondutivity and Lorentz breaking effects
for supersymmetric cosmic strings.
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