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scheme always delivers finite results, while the former produces some extra divergent terms which

are not of easy interpretation
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1. Introduction

The great success of quantum field theory in the description of the microscopic world cos-
mos is widely recognized nowadays, but it surely did not happen without great effort. A remarkable
breakthrough took place when we learned how to extract physical results from the infinities that ap-
peared in the calculations by a complex procedure known generally as renormalization[1][2][3][4][5][6].
Without going into further details, we might only add that a renormalization program usually re-
quires a regularization prescription, and even that preliminary step has its subtleties. It is illustrative
to consider the quantum electrodynamics case, where it took decades to go from its birth[7] to the
all-order renormalization proof[6][8].

Being renormalization such a difficult problem, it is certainly convenient studying it on its
simplest manifestation. So, in order to explore how the regularization and renormalization pro-
cesses work in curved manifolds, we compute the Casimir energy for a massless scalar field living
on theSN (which is probably the simplest example of curved manifold). The computation is done
by using two different regularization methods, and the nature of the results will force us to pay
closer attention into one of them (exponential cut-off) ifN≥ 4. It is important to stress at this point
that these results are known in the literature [14][13][15], we are just looking at them from another
perspective.

Last but not least, it must be said that the study of field theory on theSN has some history. A
very thorough discussion on the subject is given in [14], and Casimir effect calculations were firstly
done (as long as we are aware of) in [15], followed by [16][12][13][17], among others. There were
also a good deal of activity on theSN Casimir problem within the framework of multi-dimensional
Kaluza-Klein theories, see [18][19][20][21].

2. The Casimir energy

In order to get some insight on the problem, let us begin by solving the equation of motion
for a massive scalar field on theSN. The Klein-Gordon equation conformally coupled for a curved
manifold is1 [11]

∇ν∇νφ+m2φ+
N−1
4N

Rφ = 0 (2.1)

where∇ν is the covariant derivative and R is the curvature scalar.

The metric element on theSN is

ds2 = dt2−a2dΩ2
(

a =
1
R

)
(2.2)

where a is the radius anddΩ is the solid angle on the hypersphere and has a rather cubersome
expression [22] for generic dimension. Using (2.2) to evaluate the covariant derivatives and the
result2

1the units are such that̄h = c = 1.
2We are using the same conventions of Birrell and Davies [11].
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R(SN N
T) =

N(N−1)
a2 (2.3)

we arrive at

(
∂ν∂ν +m2− 1

a2 ∇2
ang+

1
a2

(N−1)2

4

)
φ = 0 (2.4)

where∇2
ang is the angular part of the laplacian in N dimensions. Separating variables, we get

(
∂2

t +m2 +
Λ2

a2 +
(N−1)2

4a2

)
φt(t) = 0 (2.5)

∇2
ang φang(θ1,θ2, ...θN−1) =−Λ2 φang(θ1,θ2, ...θN−1) (2.6)

The second equation, although a bit complicated, has a tabulated solution [22], and below we give
only the eigenvalues and its degeneracies

Λ2
l = l(l +N−1) DN(Λl ) = (2l +N−1)

Γ(l +N−1)
Γ(N)Γ(l +1)

(l ∈ Z) (2.7)

By a fortunate conspiracy of the curvature scalar and the eigenvalues, the expression (2.5) may
be recast into

(
a2∂2

t +a2m2 +
[
l +

N−1
2

]2
)

φ(t) = 0 (2.8)

which has a well suited form for our purposes. We shall now proceed to the evaluation of the
Casimir energy, whose standard definition goes like [10]

Ec =
Z
〈0|T00|0〉=

1
2 ∑

l

ωl (2.9)

where of courseTµν is the energy-momentum tensor. Actually, the second equality is not part of
the definition and does not always hold, but in this context it is valid. For the sake of simplicity,
from now on we will restrict ourselves to the massless scalar field case, for which the dispersion
relation reads

wl =
1
a

(
l +

N−1
2

)
(2.10)

and the Casimir energy then becomes

Ec =
1
2 ∑

l

DN(Λl )ωl =
1
2a ∑

l

(2l +N−1)
Γ(l +N−1)
Γ(N)Γ(l +1)

(
l +

N−1
2

)
(2.11)

The last expression diverges, being meaningless as it stands. In order to give a proper meaning
to this formula, we will have to carry on some procedure of regularization and renormalization,
and that is the central issue of this work. We are going to present now two different types of
regularization and then make a comparison between the results achieved with them3

3This was done on very general lines in [10], but only to the3-dimensional case.
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We may start by introducing an exponential cut-off on the expression (2.11)

Ec(δ) =
1
2 ∑

l

DN(Λl )ωl e
−δωl =

1
2a

∞

∑
l=0

DN(Λl )
(

l +
N−1

2

)
e−δ(l+ N−1

2 ) (2.12)

whereδ is our regularizing parameter. The interesting results will arise whenN ≥ 4, and for that
reason we may chooseN = 5 as our initial example

ES5

c (δ) =
1

24a

∞

∑
l=0

(l +3)(l +2)3(l +1)e
−δ(l+2)

a (2.13)

The above summation may be carried out with the result

ES5

c (δ) =
1

24a

(
−a5 d5

dδ5 +a3 d3

dδ3

)
 e

δ
2a

2 sinh
(

δ
2a

)

 (2.14)

We are interested in theδ→ 0 limit, so it will be interesting to expand expression (2.14) around
δ = 0. After a little bit of algebra we arrive at

ES5

c (δ) v 5a5

δ6 −
a3

4δ4 −
31

60480a
+O(δ2) (2.15)

which is the regularized but non-renormalized expression for the Casimir energy.

Let us now halt this calculation and introduce another regularization scheme, namely,

Ec(s) =
1
2 ∑

l

DN(Λl )ω−s
l (2.16)

where a negative power cuts-off the contribution of the higher modes and regularizes expression
(2.16). ForN = 5 it becomes

Ec(s) =
1
24

∞

∑
l=0

(l +3)(l +2)2(l +1)
[

1
a
(l +2)

]−s

=
as

24

∞

∑
l=1

[
l2(l +1)−s+2 +2l(l +1)−s+2] (2.17)

There is a fairly simple technique to construct the analytic continuation of expressions like
the one on the r.h.s. of equation (2.17). It is described in detail on reference [13], and its direct
application to this particular case gives

Ec(−1) =
1

24a

[
24+6

∞

∑
k=0

1
k!Γ(4−k)

[ζ(k−5)+2ζ(k−4)−3]

]
(2.18)

whereζ(x) is the well known Riemann zeta function. It is easy to see that only a finite number of
terms in the summation will contribute (namely, only if k=0,1,2,3,5 or 6). Collecting these terms
we arrive at the following result

Ec(−1) =− 31
60480a

(2.19)
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Let us notice that no ‘regularization-dependent’ terms appear on (2.19). It happens that by doing
an analytical continuation one is implicitly disregarding several contributions, so that a renormal-
ization process already took place. No further subtractions are necessary because it turned out that
in this case the analytic continuation took care of all the non-physical terms.

Let us now compare the expressions (2.15) and (2.19). It is readily seen that the third term on
the r.h.s. of (2.15) is in perfect agreement with the result given by (2.19), but there are two terms
that independently blow up whenδ→ 0. The first one is a volume4 term, representing as such an
uniform radius-independent energy density contribution. Furthermore, a quick calculation shows
that

[
Hyperarea ofS5

]
X




regularized background energy
density of the five-dimensional

Minkowski space


 = 5a5

δ6 (2.20)

which states that this contribution is just a background energy reference and may be subtracted
[10]. But there is still missing an explanation for thea3 term. A possible way to provide such an
explanation is by adding a gravitational part to our original action [11]

ST = Sg +Sφ =
1

8πG

Z
(R−2Λ)d4x +

Z
(∂µφ∂µφ+m2φ2 +ξRφ)d4x (2.21)

and then make use of the constants G (Newton’s constant) andΛ (cosmological constant) to absorb
some divergences. This is done by recognizing the geometrical character of the extra divergent
terms that are present in a calculation on a curved background5. This approach solves the renor-
malization problem in this case (S5), but on the other hand does not explain why we are compelled
to invoke a gravitational background field if we are using an exponential cut-off regularization6.

Besides, that is not the only problem. Let us take a look on the situation for a greater value
of N, say,N = 6. The manipulations are absolutely identical to theS5 case and therefore will be
skipped. The analogous of expression (2.15) for theS6 is given by

ES6

c (δ) v 6a5

δ7 −
a4

2δ5 −
3a2

320δ2 +O(δ) (2.22)

where we have three different radius-dependent terms that diverge in the limitδ→ 0. As a matter
of fact, one may show that the number of such terms grows as the dimensionality of the problem
increases7, thus necessarily producing an upper bound for the dimensionality in which an extraction
of a physical result by this procedure is possible. In the meantime, the negative power cut-off for
theS6 gives

ES6

c = 0 (2.23)

4Five-volume actually.
5A long and thorough discussion about the renormalization of G andΛ is to be found on chap.6 of [11]. By this

point of view, the subtraction of volume term is merely a renormalization of the cosmological constant.
6Here it is important to remark that, even for some 4-dimensional curved space-times, the inclusion of a gravitational

action like the one that appears in (2.21) does not suffices to renormalize the theory, see also [11].
7It comes directly from the form of the degeneracy of the angular modes. As an alternative, one can also arrive at

the same conclusions by making an analysis of the heat kernel expansion [23].
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which shows again the power of the analytical continuation to generate divergence-free expressions.

3. Final discussions

It has been shown that two different regularization schemes may deliver different bare
results. There is nothing new or surprising about this statement [10], as long as those schemes lead
to the same physical expression. Considering the results presented in the preceding section, one
can see that this would be exactly the case if we could get rid of some contributions produced by
the exponential cut-off procedure.

Unfortunately there seems to be no simple justification for the removal of the undesired terms,
but a tentative explanation would be the following. In his seminal paper [9], H. Casimir introduced
a cut-off regularization that works very similarly to the exponential cut-off that we are using. This
choice of regularization prescription was based on the argument that no real plate is a perfect
conductor. The cut-off would then simulate a finite conductivity of the plates, producing thus a
very elegant and physical regularization. But all of this reasoning does not apply here, because
we are dealing with a compact manifold without boundaries. Perhaps in such cases, cutting-off
high frequencies exponentially will not be enough to yield a finite result and techniques based on
analytic continuation will be preferable.

We may conclude this paper by saying that whatever explanation we find for this discrepancy,
the fact is that calculations of Casimir energies for a massless scalar field on theSN (N≥ 4) provide
simple examples for which the cut-off regularization procedure and the zeta function method do
not totally agree.
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